Advertisement

Using entanglement more efficiently in distinguishing orthogonal product states by LOCC

  • Lv-Jun LiEmail author
  • Fei Gao
  • Zhi-Chao Zhang
  • Qiao-Yan Wen
Article
  • 79 Downloads

Abstract

In this paper, we mainly study the problem of locally distinguishing orthogonal product states using entanglement as a resource. We present methods to improve the previous results, presented by other authors, based on an ancillary two-qubit maximally entangled state instead of a high-dimensional entanglement ancillary resource. Concretely, we present a method to locally distinguish a set of \(2n-1\) orthogonal product states in a \(m \otimes n\) bipartite system with an ancillary two-qubit maximally entangled state, and generalize the discrimination method to orthogonal product states in even-partite system. Then, we also present a method to locally distinguish a set of \(2(n_1+n_3)-3\) orthogonal product states in a \(n_1 \otimes n_2 \otimes n_3\) tripartite system with an ancillary two-qubit maximally entangled state, and generalize the discrimination method to orthogonal product states in odd-partite system. We hope that these results can lead to a better understanding of the relationship between nonlocality and entanglement.

Notes

Acknowledgements

This work was supported by NSFC (Grant No. 11505042, No. 61672110, No. 61572081, No. 61671082, No. 11247310 and No. 11847210), Guangdong Province Outstanding Young Teachers Training Program (Grant No. YQ2015113), the Postdoctoral Innovation Talent Support Program of China (Grant No. BX20180042), the China Postdoctoral Science Foundation (Grant No. 2018M640070), the Foundation for Distinguished Young Talents in Higher Education of Guangdong (Grants No. 2012LYM_0096, No. 2018KQNCX157), the Beijing Natural Science Foundation (Grant No. 4194088).

References

  1. 1.
    Walgate, J., Short, A.J., Hardy, L., Vedral, V.: Local distinguishability of multipartite orthogonal quantum states. Phys. Rev. Lett. 85, 4972 (2000)ADSGoogle Scholar
  2. 2.
    Chen, Y.X., Yang, D.: Optimally conclusive discrimination of nonorthogonal entangled states by local operations and classical communications. Phys. Rev. A 65, 022320 (2002)ADSGoogle Scholar
  3. 3.
    Horodecki, M., De Sen, A., Sen, U., Horodecki, K.: Local indistinguishability: more nonlocality with less entanglement. Phys. Rev. Lett. 90, 047902 (2003)ADSGoogle Scholar
  4. 4.
    Ghosh, S., Kar, G., Roy, A., Sarkar, D.: Distinguishability of maximally entangled states. Phys. Rev. A 70, 022304 (2004)ADSMathSciNetzbMATHGoogle Scholar
  5. 5.
    Bennett, C.H., Divincenzo, D.P., Fuchs, C.A., Mor, T., Rains, E., Shor, P.W., Smolin, J.A.: Quantum nonlocality without entanglement. Phys. Rev. A 59, 1070 (1999)ADSMathSciNetGoogle Scholar
  6. 6.
    Walgate, J., Hardy, L.: Nonlocality, asymmetry, and distinguishing bipartite states. Phys. Rev. Lett. 89, 147901 (2002)ADSMathSciNetzbMATHGoogle Scholar
  7. 7.
    Bennett, C.H., DiVincenzo, D.P., Mor, T., Shor, P.W., Smolin, J.A., Terhal, B.M.: Unextendible product bases and bound entanglement. Phys. Rev. Lett. 82, 5385 (1999)ADSMathSciNetzbMATHGoogle Scholar
  8. 8.
    DiVincenzo, D.P., Mor, T., Shor, P.W., Smolin, J.A., Terhal, B.M.: Unextendible product bases, uncompletable product bases and bound entanglement. Commun. Math. Phys. 238, 379 (2003)ADSMathSciNetzbMATHGoogle Scholar
  9. 9.
    Chen, P.X., Li, C.Z.: Distinguishing the elements of a full product basis set needs only projective measurements and classical communication. Phys. Rev. A 70, 022306 (2004)ADSMathSciNetzbMATHGoogle Scholar
  10. 10.
    Fan, H.: Distinguishability and indistinguishability by local operations and classical communication. Phys. Rev. Lett. 92, 177905 (2004)ADSGoogle Scholar
  11. 11.
    Nathanson, M.: Distinguishing bipartitite orthogonal states using LOCC: best and worst cases. J. Math. Phys. 46, 062103 (2005)ADSMathSciNetzbMATHGoogle Scholar
  12. 12.
    Watrous, J.: Bipartite subspaces having no bases distinguishable by local operations and classical communication. Phys. Rev. Lett. 95, 080505 (2005)ADSGoogle Scholar
  13. 13.
    Niset, J., Cerf, N.J.: Multipartite nonlocality without entanglement in many dimensions. Phys. Rev. A 74, 052103 (2006)ADSGoogle Scholar
  14. 14.
    Fan, H.: Distinguishing bipartite states by local operations and classical communication. Phys. Rev. A 75, 014305 (2007)ADSMathSciNetGoogle Scholar
  15. 15.
    Feng, Y., Shi, Y.Y.: Characterizing locally indistinguishable orthogonal product states. IEEE Trans. Inf. Theory 55, 2799 (2009)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Duan, R.Y., Xin, Y., Ying, M.S.: Locally indistinguishable subspaces spanned by three-qubit unextendible product bases. Phys. Rev. A 81, 032329 (2010)ADSGoogle Scholar
  17. 17.
    Yu, N.K., Duan, R.Y., Ying, M.S.: Any \(2\otimes n\) subspace is locally distinguishable. Phys. Rev. A 84, 012304 (2011)ADSGoogle Scholar
  18. 18.
    Bandyopadhyay, S., Ghosh, S., Kar, G.: LOCC distinguishability of unilaterally transformable quantum states. New J. Phys. 13, 123013 (2011)ADSGoogle Scholar
  19. 19.
    Bandyopadhyay, S.: More nonlocality with less purity. Phys. Rev. Lett. 106, 210402 (2011)ADSGoogle Scholar
  20. 20.
    Yu, N.K., Duan, R.Y., Ying, M.S.: Four locally indistinguishable ququad-ququad orthogonal maximally entangled states. Phys. Rev. Lett. 109, 020506 (2012)ADSGoogle Scholar
  21. 21.
    Bandyopadhyay, S.: Entanglement, mixedness, and perfect local discrimination of orthogonal quantum states. Phys. Rev. A 85, 042319 (2012)ADSGoogle Scholar
  22. 22.
    Cosentino, A.: Positive-partial-transpose-indistinguishable states via semidefinite programming. Phys. Rev. A 87, 012321 (2013)ADSGoogle Scholar
  23. 23.
    Childs, A.M., Leung, D., Mančinska, L., Ozols, M.: A framework for bounding nonlocality of state discrimination. Commun. Math. Phys. 323, 1121 (2013)ADSMathSciNetzbMATHGoogle Scholar
  24. 24.
    Zhang, Z.C., Gao, F., Tian, G.J., Cao, T.Q., Wen, Q.Y.: Nonlocality of orthogonal product basis quantum states. Phys. Rev. A 90, 022313 (2014)ADSGoogle Scholar
  25. 25.
    Zhang, Z.C., Gao, F., Qin, S.J., Yang, Y.H., Wen, Q.Y.: Nonlocality of orthogonal product states. Phys. Rev. A 92, 012332 (2015)ADSGoogle Scholar
  26. 26.
    Wang, Y.L., Li, M.S., Zheng, Z.J., Fei, S.M.: Nonlocality of orthogonal product-basis quantum states. Phys. Rev. A 92, 032313 (2015)ADSGoogle Scholar
  27. 27.
    Lebl, J., Shakeel, A., Wallach, N.: Local distinguishability of generic unentangled orthonormal bases. Phys. Rev. A 93, 012330 (2016)ADSGoogle Scholar
  28. 28.
    Xu, G.B., Wen, Q.Y., Qin, S.J., Yang, Y.H., Gao, F.: Quantum nonlocality of multipartite orthogonal product states. Phys. Rev. A 93, 032341 (2016)ADSGoogle Scholar
  29. 29.
    Cohen, S.M.: Local distinguishability with preservation of entanglement. Phys. Rev. A 75, 052313 (2007)ADSMathSciNetGoogle Scholar
  30. 30.
    Zhang, Z.C., Zhang, K.J., Gao, F., Wen, Q.Y., Oh, C.H.: Construction of nonlocal multipartite quantum states. Phys. Rev. A 95, 052344 (2017)ADSGoogle Scholar
  31. 31.
    Wang, Y.L., Li, M.S., Zheng, Z.J., Fei, S.M.: The local indistinguishability of multipartite product states. Quantum Inf. Process. 16, 5 (2017)ADSMathSciNetzbMATHGoogle Scholar
  32. 32.
    Duan, R.Y., Feng, Y., Xin, Y., Ying, M.S.: Distinguishability of quantum states by separable operations. IEEE Trans. Inf. Theory 55, 1320 (2009)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetzbMATHGoogle Scholar
  34. 34.
    Bennett, C.H., Wiesner, S.J.: Communication via oneand two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)ADSMathSciNetzbMATHGoogle Scholar
  35. 35.
    DiVincenzo, D.P., Leung, D.W., Terhal, B.M.: Quantum data hiding. IEEE Trans. Inf. Theory 48, 580 (2002)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Matthews, W., Wehner, S., Winter, A.: Distinguishability of quantum states under restricted families of measurements with an application to quantum data hiding. Commun. Math. Phys. 291, 813 (2009)ADSMathSciNetzbMATHGoogle Scholar
  37. 37.
    Cohen, S.M.: Understanding entanglement as resource: locally distinguishing unextendible product bases. Phys. Rev. A 77, 012304 (2008)ADSGoogle Scholar
  38. 38.
    Bandyopadhyay, S., Halder, S., Nathanson, M.: Entanglement as a resource for local state discrimination in multipartite systems. Phys. Rev. A 94, 022311 (2016)ADSGoogle Scholar
  39. 39.
    Zhang, Z.C., Gao, F., Cao, T.Q., Qin, S.J., Wen, Q.Y.: Entanglement as a resource to distinguish orthogonal product states. Sci. Rep. 6, 30493 (2016)ADSGoogle Scholar
  40. 40.
    Güngör, ö, Turgut, S.: Entanglement-assisted state discrimination and entanglement preservation. Phys. Rev. A 94, 032330 (2016)ADSGoogle Scholar
  41. 41.
    Zhang, Z.C., Song, Y.Q., Song, T.T., Gao, F., Qin, S.J., Wen, Q.Y.: Local distinguishability of orthogonal quantum states with multiple copies of \(2\otimes 2\) maximally entangled states. Phys. Rev A 97, 022334 (2018)ADSGoogle Scholar
  42. 42.
    Li, H.Q., Jing, N.H., Tang, X.L.: Distinguishing multipartite orthogonal product states by LOCC with entanglement as a resource. Quantum Inf. Process. 17, 195 (2018)ADSMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Computer and Information EngineeringHanshan Normal UniversityChaozhouChina
  2. 2.State Key Laboratory of Networking and Switching TechnologyBeijing University of Posts and TelecommunicationsBeijingChina
  3. 3.Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of PhysicsBeijing Institute of TechnologyBeijingChina

Personalised recommendations