Advertisement

Quantum Information Processing

, 18:294 | Cite as

Experimental implementation of an NMR NOON state thermometer

  • C. V. H. B. UhligEmail author
  • R. S. Sarthour
  • I. S. Oliveira
  • A. M. Souza
Article
  • 33 Downloads

Abstract

Utilizing the highly correlated quantum NOON states of spins, we have implemented a proof-of-principle quantum thermometer using the NMR technique for measuring the variation of local magnetic field with the temperature. The system used was the star topology system of hexafluorophosphate molecules, and the thermometer showed a sensitivity of \(85\,\mathrm{nT}/^\circ \)C. Using the hexafluorophosphate and the trimethylphosphite spin systems, we have quantified the advantage of the quantum protocol over the classical one for measuring magnetic field. The quantum protocol showed the best performance for the sensing time of \(T_\mathrm{max} = 20\,\)ms, where the errors in the measurement scaled as the Heisenberg limit 1 / N. The thermometer implementation provided measurements in the temperature with errors scaling approximately with the Heisenberg limit, more precisely \(N^{-0.94}\).

Keywords

Quantum metrology Quantum thermometry NOON states NMR quantum computing 

Notes

Acknowledgements

We acknowledge financial support from the Brazilian agencies CAPES and CNPq. This work was performed as part of the Brazilian National Institute of Science and Technology (INCT) for Quantum Information Grant No. 465469/2014-0. AMS acknowledges support from FAPERJ (203.166/2017).

References

  1. 1.
    Degen, C.L., Reinhard, F., Cappellaro, P.: Quantum sensing. Rev. Modern Phys. 89, 035002 (2017)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Giovannetti, Vittorio, Lloyd, Seth, Maccone, Lorenzo: Advances in quantum metrology. Nat. Photon. 5, 222–229 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    Modi, Kavan, Cable, Hugo, Williamson, Mark, Vedral, Vlatko: Quantum correlations in mixed-state metrology. Phys. Rev. X 1, 021022 (2011)Google Scholar
  4. 4.
    Escher, B.M., de Matos Filho, R.L., Davidovich, L.: General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology. Nat. Phys. 7, 406–411 (2011)CrossRefGoogle Scholar
  5. 5.
    Girolami, Davide, Souza, Alexandre M., Giovannetti, Vittorio, Tufarelli, Tommaso, Filgueiras, Jefferson G., Sarthour, Roberto S., Soares-Pinto, Diogo O., Oliveira, Ivan S., Adesso, Gerardo: Quantum discord determines the interferometric power of quantum states. Phys. Rev. Lett. 112, 210401 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    Cramér, H.: Mathematical Methods of Statistics. Princeton University Press, Princeton (1946)zbMATHGoogle Scholar
  7. 7.
    Israel, Yonatan, Rosen, Shamir, Silberberg, Yaron: Supersensitive polarization microscopy using NOON states of light. Phys. Rev. Lett. 112, 103604 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    Napolitano, M., Koschorreck, M., Dubost, B., Behbood, N., Sewell, R.J., Mitchell, M.W.: Interaction-based quantum metrology showing scaling beyond the Heisenberg limit. Nature 471, 486–489 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    Jones, J.A.: Magnetic field sensing beyond the standard quantum limit using 10-Spin N00N states. Science 324, 1166–1168 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    Simmons, Stephanie, Jones, Jonathan A., Karlen, Steven D., Ardavan, Arzhang, Morton, John J.L.: Magnetic field sensors using 13-spin cat states. Phys. Rev. A 82, 022330 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Shukla, Abhishek, Sharma, Manvendra, Mahesh, T.S.: NOON states in star-topology spin-systems: applications in diffusion studies and RF inhomogeneity mapping. Chem. Phys. Lett. 592, 227–231 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    Stace, Thomas M.: Quantum limits of thermometry. Phys. Rev. A 82, 011611 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Xie, D., Xu, C., Wang, A.: Quantum metrology in coarsened measurement reference. Phys. Rev. A 95, 012117 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    Xie, D., Xu, C., Wang, A.: Optimal quantum thermometry by dephasing. Quantum Inf. Process. 16, 155 (2017)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Raitz, C., Souza, A.M., Auccaise, R., Sarthour, R.S., Oliveira, I.S.: Experimental implementation of a nonthermalizing quantum thermometer. Quantum Inf. Process. 14, 37–46 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    Tham, W.K., Ferretti, H., Sadashivan, A.V., Steinberg, A.M.: Simulating and optimising quantum thermometry using single photons. Sci. Rep. 6, 38822 (2016).  https://doi.org/10.1038/srep38822 ADSCrossRefGoogle Scholar
  17. 17.
    Kucsko, G., Maurer, P.C., Yao, N.Y., Kubo, M., Noh, H.J., Lo, P.K., Park, H., Lukin, M.D.: Nanometre-scale thermometry in a living cell. Nature 500, 54–58 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Neumann, P., Jakobi, I., Dolde, F., Burk, C., Reuter, R., Waldherr, G., Honert, J., Wolf, T., Brunner, A., Shim, J.H., Suter, D., Sumiya, H., Isoya, J., Wrachtrup, J.: High-precision nanoscale temperature sensing using single defects in diamond. Nano Lett. 13(6), 2738–2742 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    Dowling, J.P.: Quantum optical metrology the lowdown on high-N00N states. Contemp. Phys. 49(2), 125–143 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    Giovannetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    Afek, Itai, Ambar, Oron, Silberberg, Yaron: High-NOON states by mixing quantum and classical light. Science 328(5980), 879–881 (2010)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Khurana, Deepak, Unnikrishnan, Govind, Mahesh, T.S.: Spectral investigation of the noise influencing multiqubit states. Phys. Rev. A 94, 062334 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    Aasi, J., Abadie, J., Zweizig, J.: Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nat. Photon. 7, 613–619 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    Auccaise, R., Araujo-Ferreira, A.G., Sarthour, R.S., Oliveira, I.S., Bonagamba, T.J., Roditi, I.: Spin squeezing in a quadrupolar nuclei NMR system. Phys. Rev. Lett. 114, 043604 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    Soares-Pinto, D.O., Auccaise, R., Maziero, J., Gavini-Viana, A., Serra, R.M., Céleri, L.C.: On the quantumness of correlations in nuclear magnetic resonance. Philos. Trans. R. Soc. A 370, 4821–4836 (2012)ADSzbMATHCrossRefGoogle Scholar
  26. 26.
    Huang, Yun-Feng, Liu, Bi-Heng, Liang Peng, Yu-Hu, Li, Li Li, Li, Chuan-Feng, Guo, Guang-Can: Experimental generation of an eight-photon Greenberger–Horne–Zeilinger state. Nat. Commun. 2, 546 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    Pande, Varad R., Bhole, Gaurav, Khurana, Deepak, Mahesh, T.S.: Strong algorithmic cooling in large star-topology quantum registers. Phys. Rev. A 96, 012330 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    Levitt, M.H.: Spin Dynamics: Basics of Nuclear Magnetic Resonance, 53. Wiley, Great Britain (2008)Google Scholar
  29. 29.
    Harris, Robin K.: Nuclear Magnetic Resonance Spectroscopy: A Physicochemical View, pp. 193–194. Longman Scientific & Technical, Hong Kong (1986)Google Scholar
  30. 30.
    Jones, J.A.: NMR quantum computation. Prog. Nucl. Magn. Reson. Spectrosc. 38, 325–360 (2001)CrossRefGoogle Scholar
  31. 31.
    Oliveira, Ivan S., Bonagamba, Tito J., Sarthour, Roberto S., Freitas, Jair C.C., de Azevedo, Eduardo R.: NMR Quantum Information Processing. Elsevier, The Netherlands (2007)Google Scholar
  32. 32.
    Schaffry, Marcus, Gauger, Erik M., Morton, John J.L., Fitzsimons, Joseph, Benjamin, Simon C., Lovett, Brendon W.: Quantum metrology with molecular ensembles. Phys. Rev. A 82, 1–5 (2010)CrossRefGoogle Scholar
  33. 33.
    Webb, A.G.: Temperature measurements using nuclear magnetic resonance. Annu. Rep. NMR Spectrosc. 45, 1–67 (2002)ADSCrossRefGoogle Scholar
  34. 34.
    Bornais, J., Brownstein, S.: A low-temperature thermometer for \(^{1}\text{ H }\), \(^{19}\text{ F }\), and \(^{13}\text{ C }\). J. Magn. Reson. 29(2), 207–211 (1978)ADSGoogle Scholar
  35. 35.
    Souza, Alexandre M., Alvarez, Gonzalo A., Suter, Dieter: Robust dynamical decoupling for quantum computing and quantum memory. Phys. Rev. Lett. 106, 240501 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    Suter, D., Alvarez, G.A.: Protecting quantum information against environmental noise. Rev. Modern Phys. 88, 041001 (2016)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Jarenwattananon, Nanette N., Glaggler, Stefan, Otto, Trenton, Melkonian, Arek, Morris, William, Burt, Scott R., Yaghi, Omar M., Bouchard, Louis-S: Thermal maps of gases in heterogeneous reactions. Nature 502, 537–540 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • C. V. H. B. Uhlig
    • 1
    Email author
  • R. S. Sarthour
    • 1
  • I. S. Oliveira
    • 1
  • A. M. Souza
    • 1
  1. 1.Centro Brasileiro de Pesquisas FísicasRio de JaneiroBrazil

Personalised recommendations