Advertisement

Growth rate of quantum knot mosaics

  • Seungsang OhEmail author
  • Youngin Kim
Article
  • 22 Downloads

Abstract

Since the Jones polynomial was discovered, the connection between knot theory and quantum physics has been of great interest. Knot mosaic theory was introduced by Lomonaco and Kauffman in the paper ‘Quantum knots and mosaics’ to give a precise and workable definition of quantum knots, intended to represent an actual physical quantum system. This paper is inspired by an open question about the knot mosaic enumeration suggested by them. A knot (mn)-mosaic is an \(m \times n\) array of 11 mosaic tiles representing a knot or a link diagram by adjoining properly. The total number \(D_{m,n}\) of knot (mn)-mosaics, which indicates the dimension of the Hilbert space of the quantum knot system, is known to grow in a quadratic exponential rate. Recently, the first author showed the existence of the knot mosaic constant \(\delta = \lim _{m, n \rightarrow \infty } (D_{m,n})^{\frac{1}{mn}}\) and proved \(4 \le \delta \le \frac{5+ \sqrt{13}}{2} = 4.302\cdots \) by developing an algorithm producing the exact enumeration of knot mosaics, which uses a recursion formula of state matrices. In this paper, we give a simpler proof of the lower bound and improve the upper bound of the knot mosaic constant as
$$\begin{aligned} 4 \le \delta \le 4.113\cdots \end{aligned}$$
by introducing two new concepts: quasimosaics and cling mosaics.

Keywords

Quantum knot Knot mosaic Mosaic growth rate 

Notes

References

  1. 1.
    Hong, K., Lee, H., Lee, H.J., Oh, S.: Upper bound on the total number of knot \(n\)-mosaics. J. Knot Theory Ramif. 23, 1450065 (2014)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Hong, K., Lee, H., Lee, H.J., Oh, S.: Small knot mosaics and partition matrices. J. Phys. A Math. Theor. 47, 435201 (2014)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Hong, K., Oh, S.: Enumeration on graph mosaics. J. Knot Theory Ramif. 26, 1750032 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Hong, K., Oh, S.: Bounds on multiple self-avoiding polygons. Can. Math. Bull. 61, 518–530 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Jones, V.: A polynomial invariant for links via von Neumann algebras. Bull. Am. Math. Soc. 129, 103–112 (1985)zbMATHCrossRefGoogle Scholar
  6. 6.
    Jones, V.: Hecke algebra representations of braid groups and link polynomials. Ann. Math. 126, 335–338 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Kauffman, L.: Knots and Physics, 3rd edn. World Scientific, Singapore (2001)zbMATHCrossRefGoogle Scholar
  8. 8.
    Kauffman, L.: Quantum computing and the Jones polynomial. In: Quantum Computation and Information, AMS CONM, vol. 305, pp. 101–137 (2002)Google Scholar
  9. 9.
    Lomonaco, S.: Quantum computation. Proc. Symp. Appl. Math. 58, 358 (2002)zbMATHGoogle Scholar
  10. 10.
    Lomonaco, S., Kauffman, L.: Quantum knots. In: Quantum Information and Computation II. Proceedings of SPIE, vol. 5436, pp. 268–284 (2004)Google Scholar
  11. 11.
    Lomonaco, S., Kauffman, L.: A 3-stranded quantum algorithm for the Jones polynomial. In: Quantum Information and Computation V. Proceedings of SPIE, vol. 6573, pp. 1–13 (2007)Google Scholar
  12. 12.
    Lomonaco, S., Kauffman, L.: Quantum knots and mosaics. Quantum Inf. Process. 7, 85–115 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Lomonaco, S., Kauffman, L.: Quantum knots and lattices, or a blueprint for quantum systems that do rope tricks. Proc. Symp. Appl. Math. 68, 209–276 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Lomonaco, S., Kauffman, L.: Quantizing knots and beyond. In: Quantum Information and Computation IX. Proceedings of SPIE, vol. 8057, pp. 1–14 (2011)Google Scholar
  15. 15.
    Madras, N., Slade, G.: The Self-avoiding Walk. Birkhäuser, Boston (1993)zbMATHGoogle Scholar
  16. 16.
    Oh, S.: Quantum knot mosaics and the growth constant. Topol. Appl. 210, 311–316 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Oh, S., Hong, K., Lee, H., Lee, H.J.: Quantum knots and the number of knot mosaics. Quantum Inf. Process. 14, 801–811 (2015)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Oh, S., Hong, K., Lee, H., Lee, H.J., Yeon, M.J.: Period and toroidal knot mosaics. J. Knot Theory Ramif. 26, 1750031 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Shor, P., Jordan, S.: Estimating Jones polynomials is a complete problem for one clean qubit. Quantum Inf. Comput. 8, 681–714 (2008)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsKorea UniversitySeoulKorea

Personalised recommendations