Advertisement

Deterministic joint remote preparation of arbitrary multi-qubit states via three-qubit entangled states

  • Jiahua WeiEmail author
  • Lei Shi
  • Shanghong Zhao
  • Kaihang Zhou
  • Longqiang YuEmail author
  • Wei Lu
  • Lihua Ma
  • Boxin Zhao
Article
  • 27 Downloads

Abstract

We propose an efficient scheme for joint remote state preparation (JRSP) of arbitrary multi-qubit states from two senders to one receiver with the 100% successful probability. Quantum channel is composed of maximally three-qubit entangled states, and several special mutually orthogonal measurement basis are constructed without the introduction of auxiliary particles. We also calculate the total classical communication cost required in the JRSP processes. The concrete JRSP procedures for remotely preparing single-qubit and two-qubit states are illustrated to prove explicitly the feasibility of this JRSP protocol.

Keywords

Joint RSP Successful probability Arbitrary multi-qubit states 

Notes

Acknowledgements

The authors thank J. Jiang, J.W. Luo and Y. Zhu for helpful discussions. This work is supported by the Program for National Natural Science Foundation of China (Grant Nos. 61803382, 61703428, and 61703420), Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2018JQ6020) and China Postdoctoral Science Foundation Funded Project (Project No. 2018M643869).

References

  1. 1.
    Bennett, C.H., Brassard, G., Grepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)MathSciNetCrossRefADSGoogle Scholar
  2. 2.
    Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)CrossRefADSGoogle Scholar
  3. 3.
    Li, W.L., Li, C.F., Guo, G.C.: Probabilistic teleportation and entanglement matching. Phys. Rev. A 61, 034301 (2000)CrossRefADSGoogle Scholar
  4. 4.
    Dai, H.Y., Chen, P.X., Liang, L.M., Li, C.Z.: Classical communication cost and remote preparation of the four-particle GHZ class state. Phys. Lett. A 355, 285 (2006)CrossRefADSGoogle Scholar
  5. 5.
    Zhang, Z.J.: Controlled teleportation of an arbitrary \(n\)-qubit quantum information using quantum secret sharing of classical message. Phys. Lett. A 352, 55 (2006)CrossRefGoogle Scholar
  6. 6.
    Dai, H.Y., Chen, P.X., Li, C.Z.: Probabilistic teleportation of an arbitrary two-particle state by a partially entangled three-particle GHZ state and W state. Opt. Commun. 231, 281 (2004)CrossRefADSGoogle Scholar
  7. 7.
    Dai, H.Y., Chen, P.X., Li, C.Z.: Probabilistic teleportation of an arbitrary two-particle state by two partial three-particle entangled W states. J. Opt. B 6, 106 (2004)MathSciNetCrossRefADSGoogle Scholar
  8. 8.
    Zhou, P., Li, X.H., Deng, F.G., Zhou, H.Y.: Multiparty-controlled teleportation of an arbitrary \(m\)-qudit state with a pure entangled quantum channel. J. Phys. A 40, 13121 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Dai, H.Y., Li, C.Z., Chen, P.X.: Probabilistic teleportation of the three-particle entangled state by the partial three-particle entangled state and the threeparticle entangled W state. Chin. Phys. Lett. 20, 1196 (2003)CrossRefADSGoogle Scholar
  10. 10.
    Li, X.H., Ghose, S.: Analysis of \(N\)-qubit perfectly controlled teleportation schemes from the controllers point of view. Phys. Rev. A 91, 052305 (2015)CrossRefGoogle Scholar
  11. 11.
    Wei, J.H., Shi, L., Han, C., Xu, Z.Y., et al.: Probabilistic teleportation via multi-parameter measurements and partially entangled states. Quantum Inf. Process 17, 82 (2018)MathSciNetCrossRefADSGoogle Scholar
  12. 12.
    Long, Y.X., Qiu, D.W., Long, D.Y.: Perfect teleportation between arbitrary split of six partites by a maximally genuinely entangled six-qubit state. Int. J. Quantum Inf. 8, 821 (2010)CrossRefGoogle Scholar
  13. 13.
    Li, L.Z., Qiu, D.W.: The states of W-class as shared resources for perfect teleportation and superdense coding. J. Phys. A 40, 10871 (2007)MathSciNetCrossRefADSGoogle Scholar
  14. 14.
    Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)CrossRefADSGoogle Scholar
  15. 15.
    Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2001)CrossRefADSGoogle Scholar
  16. 16.
    Dai, H.Y., Zhang, M., Zhang, Z.R., Xi, Z.R.: Probabilistic remote preparation of a four-particle entangled W state for the general case and for all kinds of the special cases. Commun. Theor. Phys. 60, 313 (2013)CrossRefADSGoogle Scholar
  17. 17.
    Jiang, M., Dong, D.Y.: A recursive two-phase general protocol on deterministic remote preparation of a class of multi-qubit states. J. Phys. B 45, 205506 (2012)CrossRefADSGoogle Scholar
  18. 18.
    Wei, J.H., Shi, L., Ma, L.H., Xue, Y., Zhuang, X.C., et al.: Remote preparation of an arbitrary multi-qubit state via two-qubit entangled states. Quantum Inf. Process. 16, 260 (2017)MathSciNetCrossRefADSGoogle Scholar
  19. 19.
    Xia, Y., Lu, P.M., Song, J., Song, H.S.: Deterministic remote preparation of electrons states in coupled quantum dots by stimulated raman adiabatic passage. Int. J. Theor. Phys. 49, 2045 (2010)CrossRefGoogle Scholar
  20. 20.
    Wei, J.H., Shi, L., Zhu, Y., Xue, Y., et al.: Deterministic remote preparation of arbitrary multi-qubit equatorial states via two-qubit entangled states. Quantum Inf. Process 17, 70 (2018)MathSciNetCrossRefADSGoogle Scholar
  21. 21.
    Xia, Y., Song, J., Song, H.S.: Multiparty remote state preparation. J. Phys. B 40, 3719 (2007)CrossRefADSGoogle Scholar
  22. 22.
    Yang, K.Y., Xia, Y.: Joint remote preparation of a general three-qubit state via non-maximally GHZ states. Int. J. Theor. Phys. 51, 1647 (2011)CrossRefGoogle Scholar
  23. 23.
    Zhang, Y.B., Ma, P.C.: Deterministic joint remote preparation of arbitrary two- and three-qubit entangled states. Quantum Inf. Process. 12, 997 (2013)MathSciNetCrossRefADSGoogle Scholar
  24. 24.
    Peng, J.Y., Luo, M.X., Mo, Z.W.: Joint remote state preparation of arbitrary two-particle states via GHZ-type states. Quantum Inf. Process. 12, 2325 (2013)MathSciNetCrossRefADSGoogle Scholar
  25. 25.
    Zhou, P., Li, H.W., Long, L.R.: Probabilistic multiparty joint remote preparation of an arbitrary m-qubit state with a pure entangled channel against collective noise. Int. J. Theor. Phys. 52, 849 (2013)CrossRefGoogle Scholar
  26. 26.
    Wang, Z.Y., Liu, Y.M., Zuo, X.Q., Zhang, Z.J.: Controlled remote state preparation. Commun. Theor. Phys. 52, 235 (2009)CrossRefADSGoogle Scholar
  27. 27.
    Zhang, D., Zha, X.W., Duan, Y.J., Yang, Y.Q.: Deterministic controlled bidirectional remote state preparation via a six-qubit maximally entangled state. Quantum Inf. Process. 15, 2169 (2016)MathSciNetCrossRefADSGoogle Scholar
  28. 28.
    Chen, N., Quan, D.X., Yang, H., Pei, C.X.: Deterministic controlled remote state preparation using partially entangled quantum channel. Quantum Inf. Process. 15, 1719 (2016)MathSciNetCrossRefADSGoogle Scholar
  29. 29.
    Berry, D.W., Sanders, B.C.: Optimal remote state preparation. Phys. Rev. Lett. 90, 027901 (2003)CrossRefGoogle Scholar
  30. 30.
    Chen, N., Quan, D.X., Zhu, C.H., et al.: Deterministic joint remote state preparation via partially entangled quantum channel. Int. J. Quantum Inf. 14, 1650015 (2016)CrossRefGoogle Scholar
  31. 31.
    Chen, Q.Q., Xia, Y.: Joint remote preparation of an arbitrary two-qubit state via a generalized seven-qubit brown state. Laser Phys. 26, 015203 (2016)CrossRefADSGoogle Scholar
  32. 32.
    Luo, M.X., Chen, X.B., Ma, S.Y., Niu, X.X., Yang, Y.X.: Joint remote preparation of an arbitrary three-qubit state. Opt. Commun. 283, 4796 (2010)CrossRefADSGoogle Scholar
  33. 33.
    Luo, M.X., Deng, Y.: Joint remote preparation of an arbitrary 4-qubit \(\chi \)-State. Int. J. Theor. Phys. 51, 3027 (2012)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Wang, Z.Y.: Joint remote preparation of a multi-qubit GHZ-class state via bipartite entanglements. Int. J. Quantum Inf. 9, 809 (2011)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Li, X.H., Ghose, S.: Optimal joint remote state preparation of equatorial states. Quantum Inf. Process. 14, 4585 (2015)MathSciNetCrossRefADSGoogle Scholar
  36. 36.
    Long, L.R., Zhou, P., Li, Z., Yin, C.L.: Multiparty joint remote preparation of an Arbitrary GHZ-class state via positive operator-valued measurement. Int. J. Theor. Phys. 51, 2438 (2012)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Zhou, P.: Joint remote preparation of an arbitrary \(m\)-qudit state with a pure entangled quantum channel via positive operator-valued measurement. J. Phys. A 45, 215305 (2012)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Jiang, M., Zhou, L.L., Chen, X.P., You, S.H.: Deterministic joint refdemote preparation of general multi-qubit states. Opt. Commun. 301, 39 (2013)CrossRefADSGoogle Scholar
  39. 39.
    Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfuter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575 (1997)CrossRefADSGoogle Scholar
  40. 40.
    Situ, H.Z., Qiu, D.W.: Investigating the implementation of restricted sets of multiqubit operations on distant qubits: a communication complexity perspective. Quantum Inf. Process 10, 609 (2011)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Pittman, T.B., Jacobs, B.C., Franson, J.D.: Demonstration of nondeterministic quantum logic operations using linear optical elements. Phys. Rev. Lett. 88, 257902 (2002)CrossRefADSGoogle Scholar
  42. 42.
    Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: Dense coding in experimental quantum communication. Phys. Rev. Lett. 76, 4656 (1996)CrossRefADSGoogle Scholar
  43. 43.
    Wei, J.H., Shi, L., Luo, J.W., Zhu, Y., Kang, Q.Y., et al.: Optimal remote preparation of arbitrary multi-qubit real-parameter states via two-qubit entangled states. Quantum Inf. Process 17, 141 (2018)MathSciNetCrossRefADSGoogle Scholar
  44. 44.
    Dai, H.Y., Chen, P.X., Zhang, M., Li, C.Z.: Remote preparation of an entangled two-qubit state with three parties. Chin. Phys. B 17, 27 (2008)CrossRefADSGoogle Scholar
  45. 45.
    Dai, H.Y., Zhang, M., Kuang, L.M.: Classical communication cost and remote preparation of multi-qubit with three-party. Commun. Theor. Phys. 50, 73 (2008)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Information and Navigation CollegeAir Force Engineering UniversityXi’anPeople’s Republic of China
  2. 2.Equipment Management and UAV Engineering CollegeAir Force Engineering UniversityXi’anPeople’s Republic of China

Personalised recommendations