Advertisement

Three-party quantum secret sharing against collective noise

  • 191 Accesses

  • 2 Citations

Abstract

In this paper, based on logical GHZ states and logical χ-states, we present four three-party quantum secret sharing protocols immune to the collective-dephasing noise and the collective-rotation noise, respectively. They make full use of the measurement correlation property of multi-particle entangled states and local unitary operations. Compared with existing three-party quantum secret sharing protocols against collective noise, our protocols are the most efficient. Furthermore, these protocols are congenitally free from the Trojan horse attacks.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

References

  1. 1.

    Bennett, C. H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing. New York: IEEE, pp. 175–179 (1984)

  2. 2.

    Ekert, A.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–664 (1991)

  3. 3.

    Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)

  4. 4.

    Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

  5. 5.

    Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

  6. 6.

    Dušek, M., Haderka, O., Hendrych, M., Myska, R.: Quantum identification system. Phys. Rev. A 60, 149–156 (1999)

  7. 7.

    Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A: Math. Theor. 42(5), 055305 (2009)

  8. 8.

    Yang, Y.G., Cao, W.F., Wen, Q.Y.: Secure quantum private comparison. Phys. Scr. 80(6), 065002 (2009)

  9. 9.

    Chen, X.B., Xu, G., Niu, X.X., Wen, Q.Y., Yang, Y.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single particle measurement. Opt. Commun. 283(7), 1561–1565 (2010)

  10. 10.

    Yang, Y.-G., Liu, Z.-C., Li, J., Chen, X.-B., Zuo, H.-J., Zhou, Y.-H., Shi, W.-M.: Theoretically extensible quantum digital signature with starlike cluster states. Quantum Inf. Process. 16(1), 1–15 (2017)

  11. 11.

    Yang, Y.-G., Lei, H., Liu, Z.-C., Zhou, Y.-H., Shi, W.-M.: Arbitrated quantum signature scheme based on cluster states. Quantum Inf. Process. 15(6), 2487–2497 (2016)

  12. 12.

    Gao, F., Liu, B., Huang, W., Wen, Q.Y.: Postprocessing of the oblivious key in quantum private query. IEEE. J. Sel. Top. Quant. 21, 6600111 (2015)

  13. 13.

    Wei, C.Y., Wang, T.Y., Gao, F.: Practical quantum private query with better performance in resisting joint-measurement attack. Phys. Rev. A 93, 042318 (2016)

  14. 14.

    Yang, Y.-G., Liu, Z.-C., Chen, X.-B., Zhou, Y.-H., Shi, W.-M.: Robust QKD-based private database queries based on alternative sequences of single-qubit measurements. Sci. Chin. Phys. Mech. Astron. 60(12), 120311 (2017)

  15. 15.

    Yang, Y.-G., Liu, Z.-C., Li, J., Chen, X.-B., Zuo, H.-J., Zhou, Y.-H., Shi, W.-M.: Quantum private query with perfect user privacy against a joint-measurement attack. Phys. Lett. A 380(48), 4033–4038 (2016)

  16. 16.

    Yang, Y.-G., Liu, Z.C., Chen, X.B., Cao, W.F., Zhou, Y.H., Shi, W.M.: Novel classical post-processing for quantum key distribution-based quantum private query. Quantum Inf. Process. 15, 3833–3840 (2016)

  17. 17.

    Gao, F., Liu, B., Wen, Q.-Y.: Flexible quantum private queries based on quantum key distribution. Opt. Exp. 20, 17411–17420 (2012)

  18. 18.

    Yang, Y.-G., Sun, S.-J., Xu, P., Tian, J.: Flexible protocol for quantum private query based on B92 protocol. Quantum Inf. Process. 13, 805–813 (2014)

  19. 19.

    Gao, F., Qin, S.J., Huang, W., Wen, Q.Y.: Quantum private query: a new kind of practical quantum cryptographic protocols. Sci. China-Phys. Mech. Astron. 62, 070301 (2019)

  20. 20.

    Yang, Y.-G., Guo, X.-P., Xu, G., Chen, X.-B., Li, J., Zhou, Y.-H., Shi, W.-M.: Reducing the communication complexity of quantum private database queries by subtle classical post-processing with relaxed quantum ability. Computers & Security 81, 15–24 (2019)

  21. 21.

    Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

  22. 22.

    Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999)

  23. 23.

    Guo, G.P., Guo, G.C.: Quantum secret sharing without entanglement. Phys. Rev. A 310, 247–251 (2003)

  24. 24.

    Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)

  25. 25.

    Zhang, Z., Liu, W., Li, C.: Quantum secret sharing based on quantum error-correcting codes. Chin. Phys. B 20(5), 050309 (2011)

  26. 26.

    Jia, H.Y., Wen, Q.Y., Gao, F., Qin, S.J., Guo, F.Z.: Dynamic quantum secret sharing. Phys. Lett. A 376, 1035–1041 (2012)

  27. 27.

    Cleve, R., Gottesman, D., Lo, H.-K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648 (1999)

  28. 28.

    Gottesman, D.: Theory of quantum secret sharing. Phys. Rev. A 61, 042311 (2000)

  29. 29.

    Lance, A.M., Symul, T., Bowen, W.P., Sanders, B.C., Lam, P.K.: Tripartite quantum state sharing. Phys. Rev. Lett. 92, 177903 (2004)

  30. 30.

    Yang, C.P., Chu, S.I., Han, S.: Efficient many-party controlled teleportation of multiqubit quantum information via entanglement. Phys. Rev. A 70, 022329 (2004)

  31. 31.

    Ray, M., Chatterjee, S., Chakrabarty, I.: Sequential quantum secret sharing in a noisy environment aided with weak measurements. Eur. Phys. J. D 70, 1–11 (2016)

  32. 32.

    Yang, Y.-G., Xia, J., Jia, X., Shi, L., Zhang, H.: Economical five-party quantum state sharing of an arbitrary m-atom with five-atom cluster state in cavity QED. Eur. Phys. J. D 67(3), 59–61 (2013)

  33. 33.

    Gordon, G., Rigolin, G.: Generalized quantum-state sharing. Phys. Rev. A 73, 062316 (2006)

  34. 34.

    Bai, C.M., Li, Z.H., Xu, T.T., Li, Y.M.: A generalized information theoretical model for quantum secret sharing. Int. J. Theor. Phys. 55, 4972–4986 (2016)

  35. 35.

    Karimipour, V., Asoudeh, M.: Quantum secret sharing and random hopping: using single states instead of entanglement. Phys. Rev. A 92, 030301(R) (2015)

  36. 36.

    Gheorghiu, V., Sanders, B.C.: Accessing quantum secrets via local operations and classical communication. Phys. Rev. A 88(2), 022340 (2013)

  37. 37.

    Tavakoli, A., Herbauts, I., Zukowski, M., Bourennane, M.: Secret sharing with a single d-level quantum system. Phys. Rev. A 92, 030302(R) (2015)

  38. 38.

    Maitra, A., De, S.J., Paul, G., Pal, A.K.: Proposal for quantum rational secret sharing. Phys. Rev. A 92, 022305 (2015)

  39. 39.

    Rahaman, R., Parker, M.G.: Quantum scheme for secret sharing based on local distinguishability. Phys. Rev. A 91, 022330 (2015)

  40. 40.

    Wang, J., Li, L., Peng, H., Yang, Y.: Quantum-secret-sharing scheme based on local distinguishability of orthogonal multiqudit entangled states. Phys. Rev. A 95(2), 022320 (2017)

  41. 41.

    Zanardi, P., Rasetti, M.: Noiseless quantum codes. Phys. Rev. Lett. 79(17), 3306 (1997)

  42. 42.

    Kwiat, P.G., Berglund, A.J., Altepeter, J.B., White, A.G.: Experimental verification of decoherence-free subspaces. Science (New York, N.Y.) 290(5491), pp. 498–501 (2000)

  43. 43.

    Gu, B., Mu, L., Ding, L., et al.: Fault tolerant three-party quantum secret sharing against collective noise. Opt. Commun. 283(15), 3099–3103 (2010)

  44. 44.

    Li, C.-Y., Li, Y.-S.: Fault-tolerate three-party quantum secret sharing over a collective-noise channel. Chin. Phys. Lett. 28, 020304 (2011)

  45. 45.

    Yang, Y.G., Teng, Y.W., Chai, H.P., Wen, Q.Y.: Fault-tolerant quantum secret sharing against collective noise. Phys. Scr. 83, 025003 (2011)

  46. 46.

    Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351, 23–25 (2006)

  47. 47.

    Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)

  48. 48.

    Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74, 054302 (2006)

  49. 49.

    Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635–5638 (2000)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61572053, 61671087, U1636106, 61602019, 61571226, 61701229, 61702367); Beijing Natural Science Foundation (Grant No. 4182006); Natural Science Foundation of Jiangsu Province, China (Grant No. BK20170802); Jiangsu Postdoctoral Science Foundation; Guangxi Key Laboratory of Cryptography and Information Security.

Author information

Correspondence to Yu-Guang Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Gao, S., Li, D. et al. Three-party quantum secret sharing against collective noise. Quantum Inf Process 18, 215 (2019) doi:10.1007/s11128-019-2319-1

Download citation

Keywords

  • Quantum cryptography
  • Quantum secret sharing
  • Collective noise
  • Qubit efficiency