Advertisement

Decomposition of completely symmetric states

  • Lilong QianEmail author
  • Delin Chu
Article
  • 35 Downloads

Abstract

Symmetry is a fundamental milestone of quantum physics, and the relation between entanglement is one of the central mysteries of quantum mechanics. In this paper, we consider a subclass of symmetric quantum states in the bipartite system, namely the completely symmetric states, which is invariant under the index permutation. We investigate the separability of these states. After studying some examples, we conjecture that the completely symmetric state is separable if and only if it is S-separable, i.e., each term in this decomposition is a symmetric pure product state \({|x,x\rangle }{\langle x,x|}\). It was proved to be true when the rank does not exceed \(\max \{4,N+1\}\). After studying the properties of these state, we propose a numerical algorithm which is able to detect S-separability. This algorithm is based on the best separable approximation, which furthermore turns out to be applicable to test the separability of quantum states in bosonic system. Besides, we analyse the convergence behaviour of this algorithm. Some numerical examples are tested to show the effectiveness of the algorithm.

Keywords

Quantum entanglement Completely symmetric states Symmetrically separable Best separable approximation 

Notes

Acknowledgements

The authors would like to thank the Editor and anonymous referees for their comments and suggestions on the earlier version of this paper. The work was supported by NUS Research Grant R-146-000-236-114.

Supplementary material

References

  1. 1.
    Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777–780 (1935)ADSzbMATHCrossRefGoogle Scholar
  2. 2.
    Schrödinger, E.: Die gegenwärtige situation in der quantenmechanik. Naturwissenschaften 23(49), 823–828 (1935)ADSzbMATHCrossRefGoogle Scholar
  3. 3.
    Nielsen, M.A., Chuang, I.L.: Quantum information theory (2002)Google Scholar
  4. 4.
    Gurvits, L.: Classical deterministic complexity of edmonds’ problem and quantum entanglement. In: Proceedings of the Thirty-fifth Acm Symposium on Theory Of Computing - STOC ’03, pages 10–19. ACM, ACM Press, (2003)Google Scholar
  5. 5.
    Gharibian, S.: Strong NP-hardness of the quantum separability problem. arXiv preprintarXiv:0810.4507, (2008)Google Scholar
  6. 6.
    Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77(8), 1413–1415 (1996)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223(1–2), 1–8 (1996)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Woronowicz, S.L.: Positive maps of low dimensional matrix algebras. Rep. Math. Phys. 10(2), 165–183 (1976)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed quantum states: linear contractions and permutation criteria. Open Syst. Inf. Dyn. 13(01), 103–111 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Chruściński, D., Jurkowski, J., Kossakowski, A.: Quantum states with strong positive partial transpose. Phys. Rev. A 77(2), 022113 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    Ha, K.-C.: Entangled states with strong positive partial transpose. Phys. Rev. A 81(6), 064101 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Qian, L.: Separability of multipartite quantum states with strong positive partial transpose. Phys. Rev. A 98, 012307 (2018)ADSCrossRefGoogle Scholar
  13. 13.
    Kraus, B., Cirac, J.I., Karnas, S., Lewenstein, M.: Separability in2\(\times \)Ncomposite quantum systems. Phys. Rev. A 61(6), 062302 (2000)ADSMathSciNetGoogle Scholar
  14. 14.
    Horodecki, P., Lewenstein, M., Vidal, G., Cirac, I.: Operational criterion and constructive checks for the separability of low-rank density matrices. Phys. Rev. A 62(3), 032310 (2000)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Fei, S.-M., Gao, X.-H., Wang, X.-H., Wang, Z.-X., Ke, W.: Separability and entanglement in \(c^2\otimes c^3\otimes c^n \)composite quantum systems. Phys. Rev. A 68(2), 022315 (2003)ADSGoogle Scholar
  16. 16.
    Li, M., Wang, J., Fei, S.-M., Li-Jost, X.: Quantum separability criteria for arbitrary-dimensional multipartite states. Phys. Rev. A 89, 022325 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    Doherty, A.C., Parrilo, P.A., Spedalieri, F.M.: Complete family of separability criteria. Phys. Rev. A 69(2), 022308 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    Ioannou, L.M., Travaglione, B.C., Cheung, D.C., Ekert, A.K.: Improved algorithm for quantum separability and entanglement detection. Phys. Rev. A 70, 060303 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    Dahl, G., Leinaas, J.M., Myrheim, J., Ovrum, E.: A tensor product matrix approximation problem in quantum physics. Linear Algebra Appl. 420(2–3), 711–725 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Bertsekas, D.P.: Nonlinear Programming. Athena scientific Belmont, Belmont (1999)zbMATHGoogle Scholar
  21. 21.
    Kofidis, E., Regalia, P.A.: On the best rank-1 approximation of higher-order supersymmetric tensors. SIAM J. Matrix Anal. Appl. 23(3), 863–884 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40(6), 1302–1324 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Chen, L., Đoković, D.Ž.: Dimensions, lengths, and separability in finite-dimensional quantum systems. J. Math. Phys. 54(2), 022201 (2013)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Chen, L., Đoković, D.Ž.: Distillability and PPT entanglement of low-rank quantum states. J. Phys. A: Math. Theor. 44(28), 285303 (2011)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Chen, L., Đoković, D.Ž.: Properties and construction of extreme bipartite states having positive partial transpose. Commun. Math. Phys. 323(1), 241–284 (2013)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Nedić, A., Bertsekas, D.P., Ozdaglar, A.E.: Convex Analysis and Optimization, vol. 1. Athena scientific Belmont, Belmont (2005)zbMATHGoogle Scholar
  28. 28.
    Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming. Wiley, Hoboken (2005)zbMATHGoogle Scholar
  29. 29.
    Pagonis, V., Kitis, G., Furetta, C.: Numerical and Practical Exercises in Thermoluminescence. Springer, New York (2006)Google Scholar
  30. 30.
    Qi, L., Wang, F., Wang, Y.: Z-eigenvalue methods for a global polynomial optimization problem. Math. Program. 118(2), 301–316 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Eckert, K., Schliemann, J., Bruß, D., Lewenstein, M.: Quantum correlations in systems of indistinguishable particles. Ann. Phys. 299(1), 88–127 (2002)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Wirtinger, W.: Zur formalen theorie der funktionen von mehr komplexen veränderlichen. Math. Ann. 97(1), 357–375 (1927)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Guan, Y., Chu, M.T., Chu, D.: SVD-based algorithms for the best rank-1 approximation of a symmetric tensor. SIAM J. Matrix Anal. Appl. 39(3), 1095–1115 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Guan, Y., Chu, M.T., Chu, D.: Convergence analysis of an SVD-based algorithm for the best rank-1 tensor approximation. Linear Algebra Appl. 555, 53–69 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Chen, L., Chu, D., Qian, L., Shen, Y.: Separability of completely symmetric states in a multipartite system. Phys. Rev. A 99, 032312 (2019)ADSCrossRefGoogle Scholar
  36. 36.
    Hao, C., Cui, C., Dai, Y.: A feasible trust-region method for calculating extreme z-eigenvalues of symmetric tensors. Pac. J. Optim. 11(2), 291–307 (2015)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Li, G., Qi, L., Gaohang, Y.: The z-eigenvalues of a symmetric tensor and its application to spectral hypergraph theory. Numer. Linear Algebra Appl. 20(6), 1001–1029 (2013)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsNational University of SingaporeSingaporeSingapore

Personalised recommendations