QRMA: quantum representation of multichannel audio

  • Engin ŞahinEmail author
  • İhsan Yilmaz


In this study, quantum representation of multichannel aıdio (QRMA) that can be used in many fields in future is proposed. The QRMA uses three entangled qubit sequences where time, channel, negative and positive amplitude values can be stored. The three-qubit sequences are in basis state: \(| 0 \rangle \) and \(| 1 \rangle \). The preparation of the QRMA starting from the initial state \(| 0 \rangle \) is presented. In addition, multichannel audio is obtained from the QRMA quantum state. Several operations such as signal merging, signal addition, signal inversion, signal reversal, channel merging and channel reversal are studied on the QRMA. The simulations and the analyses show that the QRMA has more advantages than the other models in the literature.


Quantum audio Quantum multichannel audio representation Quantum multichannel audio processing 



We would like to thank referees for valuable suggestions.


  1. 1.
    Feynman, R.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982)MathSciNetGoogle Scholar
  2. 2.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Pearson Prentice Hall, New Jersey (2008)Google Scholar
  3. 3.
    Gunaydin, M.: Ultrasonik radyasyon ile sularından doğal organik madde gideriminin araş–ştırılması. Master of Science Thesis, Suleyman Demirel University, Turkey (2010)Google Scholar
  4. 4.
    Venegas-Andraca, S.E., Bose, S.: Storing, processing and retrieving an image using quantum mechanics. Proc. SPIE Conf. Quantum Inf. Comput. 5105, 137–147 (2003)ADSGoogle Scholar
  5. 5.
    Latorre, J.I.: Image Compression and Entanglement (2005). arxiv:quant-ph/0510031
  6. 6.
    Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum systems. Quantum Inf. Process. 9(1), 1–11 (2010)MathSciNetGoogle Scholar
  7. 7.
    Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Zhang, Y., Lu, K., Gao, Y., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 2833–2860 (2013)ADSMathSciNetzbMATHGoogle Scholar
  9. 9.
    Zhang, Y., Lu, K., Gao, Y., Xu, K.: A novel quantum representation for log-polar images. Quantum Inf. Process. 12(9), 3103–3126 (2013)ADSMathSciNetzbMATHGoogle Scholar
  10. 10.
    Sun, B., Iliyasu, A., Yan, F., Hirota, K.: An rgb multi-channel representation for images on quantum computers. J. Adv. Comput. Intell. Intell. Inform. 17(3), 404–417 (2013)Google Scholar
  11. 11.
    Yuan, S., Mao, X., Xue, Y., Chen, L., Xiong, Q.: Compare SQR: a simple quantum representation of infrared images. Quantum Inf. Process. 13(6), 1353–1379 (2014)ADSMathSciNetzbMATHGoogle Scholar
  12. 12.
    Abdolmaleky, M., Naseri, M., Batle, J., Farouk, A., Gong, L.H.: Red–green–blue multi-channel quantum representation of digital images. Int. J. Light Electron Opt. 128(1), 121–132 (2017)Google Scholar
  13. 13.
    Şahin, E., Yılmaz, İ.: QRMW: quantum representation of multi wavelength images. Turk. J. Electr. Eng. Comput. Sci. 26(2), 768–779 (2018)Google Scholar
  14. 14.
    Le, P., Iliyasu, A., Dong, F., Hirota, K.: Strategies for designing geometric transformations on quantum images. Theor. Comput. Sci. 412(15), 1406–1418 (2011)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Caraiman, S., Manta, V.: Histogram-based segmentation of quantum images. Theor. Comput. Sci. 529(1), 46–60 (2014)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Jiang, N., Wu, W.Y., Wang, L.: The quantum realization of Arnold and Fibonacci image scrambling. Quantum Inf. Process. 13(5), 1223–1236 (2014)ADSMathSciNetzbMATHGoogle Scholar
  17. 17.
    Jiang, N., Wang, L.: Analysis and improvement of the quantum Arnold image scrambling. Quantum Inf. Process. 13(7), 1545–1551 (2014)ADSMathSciNetzbMATHGoogle Scholar
  18. 18.
    Jiang, N., Wang, L., Wu, W.Y.: Quantum Hilbert image scrambling. Int. J. Theor. Phys. 53(7), 2463–2484 (2014)zbMATHGoogle Scholar
  19. 19.
    Wang, J., Jiang, N., Wang, L.: Quantum image translation. Quantum Inf. Process. 14(5), 1589–1604 (2015)ADSMathSciNetzbMATHGoogle Scholar
  20. 20.
    Jiang, N., Wang, L.: Quantum image scaling using nearest neighbor interpolation. Quantum Inf. Process. 14(5), 1559–1571 (2015)ADSMathSciNetzbMATHGoogle Scholar
  21. 21.
    Zhang, Y., Lu, K., Xu, K., Gao, Y.H., Wilson, R.: Local feature point extraction for quantum images. Quantum Inf. Process. 14(5), 1573–1588 (2015)ADSMathSciNetzbMATHGoogle Scholar
  22. 22.
    Iliyasu, A., Le, P., Dong, F., Hirota, K.: Watermarking and authentication of quantum images based on restricted geometric transformations. Inf. Sci. 186(1), 126–149 (2012)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Zhang, W.W., Gao, F., Liu, B., Hia, H.Y., Wen, Q.Y., Chen, H.: A quantum watermark protocol. Int. J. Theor. Phys. 52(2), 504–513 (2013)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Song, X., Wang, S., Liu, S., Abd El-Latif, A., Niu, X.: A dynamic watermarking scheme for quantum images using quantum wavelet transform. Quantum Inf. Process. 12(12), 3689–3706 (2013)ADSMathSciNetzbMATHGoogle Scholar
  25. 25.
    Song, X., Wang, S., Abd El-Latif, A., Niu, X.: Dynamic watermarking scheme for quantum images based on hadamard transform. Multimed. Syst. 20(4), 379–388 (2014)Google Scholar
  26. 26.
    Jiang, N., Zhao, N., Wang, L.: Lsb based quantum image steganography algorithm. Int. J. Theor. Phys. 55(1), 107–123 (2016)zbMATHGoogle Scholar
  27. 27.
    Heidari, S., Naseri, M.: A novel lsb based quantum watermarking. Int. J. Theor. Phys. 55(10), 4205–4218 (2016)zbMATHGoogle Scholar
  28. 28.
    Miyake, S., Nakamae, K.: A quantum watermarking scheme using simple and small-scale quantum circuits. Quantum Inf. Process. 15(5), 1849–1864 (2016)ADSMathSciNetzbMATHGoogle Scholar
  29. 29.
    Sang, J., Wang, S., Li, Q.: Least significant qubit algorithm for quantum images. Quantum Inf. Process. 15(11), 4441–4460 (2016)ADSMathSciNetzbMATHGoogle Scholar
  30. 30.
    Şahin, E., Yılmaz, İ.: A novel quantum steganography algorithm based on LSBq for multi-wavelength quantum images. Quantum Inf. Process. 17(11), 319 (2018)ADSMathSciNetzbMATHGoogle Scholar
  31. 31.
    Wang, S., Song, X.H., Niu, X.M.: A novel encryption algorithm for quantum images based on quantum wavelet transform and diffusion. Intell. Data Anal. Appl. II(298), 243–250 (2014)Google Scholar
  32. 32.
    Hua, T., Chen, J., Pei, D., et al.: Quantum image encryption algorithm based on image correlation decomposition. Int. J. Theor. Phys. 54(2), 526–537 (2015)zbMATHGoogle Scholar
  33. 33.
    Zhou, R.-G., Wu, Q., Zhang, M.-Q., Shen, C.-Y.: Quantum image encryption and decryption algorithms based on quantum image geometric transformations. Int. J. Theor. Phys. 52(6), 1802–1817 (2013)MathSciNetGoogle Scholar
  34. 34.
    Şahin, E., Yılmaz, İ.: Security of neqr quantum image by using quantum fourier transform with blind trent. Int. J. Inf Secur. Sci. 7(1), 20–25 (2018)Google Scholar
  35. 35.
    Yang, Y.G., Tiana, J., Suna, S.J., Peng, X.: Quantum-assisted encryption for digital audio signals. Int. J. Light Electron Opt. 126(21), 3221–3226 (2015)Google Scholar
  36. 36.
    Wang, J.: QRDA: quantum representation of digital audio. Int. J. Theor. Phys. 55(3), 1622–1641 (2016)zbMATHGoogle Scholar
  37. 37.
    Yan, F., Guo, Y., Iliyasu, A., Yang, H.: Flexible representation and manipulation of audio signals on quantum computers. Theor. Comput. Sci. 752, 71–85 (2017)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Chen, K., Iliyasu, A., Zhao, J.: Exploring the implementation of steganography protocols on quantum audio signals. Int. J. Theor. Phys. 57(2), 476–494 (2018)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Pirandola, S., Bardhan, B.R., Gehring, T., Weedbrook, C., Lloyd, S.: Advances in photonic quantum sensing. Nat. Photonics 12, 724–733 (2018)ADSGoogle Scholar
  40. 40.
    Ruiz-Perez, L., Garcia-Escartin, J.C.: Quantum arithmetic with the quantum Fourier transform. Quantum Inf. Process. 16(6), 152 (2017)ADSMathSciNetzbMATHGoogle Scholar
  41. 41.
    Vedral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic operations. Phys. Rev. A 54(1), 147–153 (1996)ADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Computer and Instructional Technologies EducationCanakkale Onsekiz Mart UniversityCanakkaleTurkey
  2. 2.Department of Computer EngineeringCanakkale Onsekiz Mart UniversityCanakkaleTurkey

Personalised recommendations