Quantum coherence in mutually unbiased bases

  • Yao-Kun Wang
  • Li-Zhu Ge
  • Yuan-Hong TaoEmail author


We investigate the \(l_{1}\) norm of coherence of quantum states in mutually unbiased bases. We find that the sum of squared \(l_{1}\) norm of coherence of single qubit mixed state is less than two. We derive that the \(l_{1}\) norms of coherence of three classes of X states in nontrivial mutually unbiased bases for 4-dimensional Hilbert space are equal. We propose the concept of “autotensor of mutually unbiased basis (AMUB)” by the tensor of mutually unbiased bases and depict the level surface of the constant sum of the \(l_{1}\) norm of coherence of Bell-diagonal states in AMUB. We find that the \(l_{1}\) norms of coherence of Werner states and isotropic states in AMUB are equal, respectively.


Quantum coherence Mutually unbiased bases Bell-diagonal states Werner states Isotropic states 



  1. 1.
    Jha, P.K., Mrejen, M., Kim, J., Wu, C., Wang, Y., Rostovtsev, Y.V., Zhang, X.: Coherence-driven topological transition in quantum metamaterials. Phys. Rev. Lett. 116(16), 165502 (2016)ADSGoogle Scholar
  2. 2.
    Bagan, E., Bergou, J.A., Cottrell, S.S., Hillery, M.: Relations between coherence and path information. Phys. Rev. Lett. 116(16), 160406 (2016)ADSGoogle Scholar
  3. 3.
    Kammerlander, P., Anders, J.: Coherence and measurement in quantum thermodynamics. Sci. Rep. 6(1), 22174 (2016)ADSGoogle Scholar
  4. 4.
    Glauber, R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131(6), 2766 (1963)ADSMathSciNetzbMATHGoogle Scholar
  5. 5.
    Sudarshan, E.C.G.: Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10(7), 277 (1963)ADSMathSciNetzbMATHGoogle Scholar
  6. 6.
    Frank, B., Amy, N.: Optical Coherence and Quantum Optics. Cambridge University Press, Cambridge (1995)Google Scholar
  7. 7.
    Giovannetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced measurements: beating the standard quantum limit. Science 306(5700), 1330 (2004)ADSGoogle Scholar
  8. 8.
    Demkowicz-Dobrzański, R., Maccone, L.: Using entanglement against noise in quantum metrology. Phys. Rev. Lett. 113(25), 250801 (2014)ADSGoogle Scholar
  9. 9.
    Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photonics 5(4), 222 (2011)ADSGoogle Scholar
  10. 10.
    Lostaglio, M., Jennings, D., Rudolph, T.: Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun. 6(5278), 6383 (2011)Google Scholar
  11. 11.
    Lostaglio, M., Korzekwa, K., Jennings, D., Rudolph, T.: Quantum coherence, time-translation symmetry and thermodynamics. Phys. Rev. X 5(2), 021001 (2015)Google Scholar
  12. 12.
    Vazquez, H., Skouta, R., Schneebeli, S., Kamenetska, M., Breslow, R., Venkataraman, L.: Probing the conductance superposition law in single-molecule circuits with parallel paths. Nat. Nanotechnol. 7(10), 663 (2012)ADSGoogle Scholar
  13. 13.
    Wacker, A., Karlström, O., Linke, H., Karlström, G.: Increasing thermoelectric performance using coherent transport. Phys. Rev. B 84(11), 113415 (2011)ADSGoogle Scholar
  14. 14.
    Misra, A., Singh, U., Bhattacharya, S., Pati, A.K.: Energy cost of creating quantum coherence. Phys. Rev. A 93(5), 052335 (2016)ADSGoogle Scholar
  15. 15.
    Aberg, J.: Catalytic coherence. Phys. Rev. Lett. 113(15), 150402 (2014)ADSGoogle Scholar
  16. 16.
    Narasimhachar, V., Gour, G.: Low-temperature thermodynamics with quantum coherence. Nat. Commun. 6, 7689 (2015)ADSGoogle Scholar
  17. 17.
    Ćwikliński, P., Studziński, M., Horodecki, M., Oppenheim, J.: Limitations for thermodynamical processing of coherences. Phys. Rev. Lett. 115(21), 210403 (2014)Google Scholar
  18. 18.
    Lloyd, S.: Quantum coherence in biological systems. J. Phys. Conf. Ser. 302, 012037 (2011)Google Scholar
  19. 19.
    Li, C.M., Lambert, N., Chen, Y.N., Chen, G.Y., Nori, F.: Witnessing quantum coherence: from solid-state to biological systems. Sci. Rep. 2(11), 885 (2012)Google Scholar
  20. 20.
    Huelga, S.F., Plenio, M.B.: Vibrations, quanta and biology. Contemp. Phys. 54(4), 181–207 (2013)ADSGoogle Scholar
  21. 21.
    Levi, F., Mintert, F.: A quantitative theory of coherent delocalization. New J. Phys. 16(3), 935–941 (2014)Google Scholar
  22. 22.
    Plenio, M., Huelga, S.: Dephasing assisted transport: quantum networks and biomolecules. New J. Phys. 10(11), 2952–2965 (2012)Google Scholar
  23. 23.
    Rebentrost, P., Mohseni, M., Aspuru-Guzik, A.: Role of quantum coherence and environmental fluctuations in chromophoric energy transport. J. Phys. Chem. B 113(29), 9942–7 (2009)Google Scholar
  24. 24.
    Shao, L.H., Xi, Z., Fan, H., Li, Y.: The fidelity and trace norm distances for quantifying coherence. Phys. Rev. A 91, 042120 (2014)ADSGoogle Scholar
  25. 25.
    Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140101 (2014)Google Scholar
  26. 26.
    Rastegin, A.E.: Relative error of state-dependent cloning. Phys. Rev. A 66(4), 519–531 (2002)Google Scholar
  27. 27.
    Chitambar, E., Gour, G.: Comparison of incoherent operations and measures of coherence. Phys. Rev. A 94(5), 052336 (2016)ADSGoogle Scholar
  28. 28.
    Ma, J., Yadin, B., Girolami, D., Vedral, V., Gu, M.: Converting coherence to quantum correlations. Phys. Rev. Lett. 116(16), 160407 (2016)ADSGoogle Scholar
  29. 29.
    Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115(2), 020403 (2015)ADSMathSciNetGoogle Scholar
  30. 30.
    Radhakrishnan, C., Parthasarathy, M., Jambulingam, S., Byrnes, T.: Distribution of quantum coherence in multipartite systems. Phys. Rev. Lett. 116(15), 150504 (2016)ADSGoogle Scholar
  31. 31.
    Yao, Y., Xiao, X., Ge, L., Sun, C.P.: Quantum coherence in multipartite systems. Phys. Rev. A 92(2), 022112 (2015)ADSGoogle Scholar
  32. 32.
    Xi, Z., Li, Y., Fan, H.: Quantum coherence and correlations in quantum system. Sci. Rep. 5, 10922 (2015)ADSGoogle Scholar
  33. 33.
    Bromley, T.R., Cianciaruso, M., Adesso, G.: Frozen quantum coherence. Phys. Rev. Lett. 114, 210401 (2015)ADSGoogle Scholar
  34. 34.
    Yu, X.-D., Zhang, D.J., Liu, C.L., Tong, D.M.: Measure-independent freezing of quantum coherence. Phys. Rev. A 93(6), 060303 (2016)ADSGoogle Scholar
  35. 35.
    Spengler, C., Huber, M., Brierley, S., Adaktylos, T., Hiesmayr, B.C.: Entanglement detection via mutually unbiased bases. Phys. Rev. A 86(2), 8260–8269 (2012)Google Scholar
  36. 36.
    Wootters, W.K., Fields, B.D.: Optimal state-determination by mutually unbiased measurements. Ann. Phys. 191(2), 363–381 (1989)ADSMathSciNetGoogle Scholar
  37. 37.
    Gottesman, D.: Class of quantum error correcting codes saturating the quantum Hamming bound. Phys. Rev. A 54(3), 1862–1868 (1996)ADSMathSciNetGoogle Scholar
  38. 38.
    Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction and orthogonal geometry. Phys. Rev. Lett. 78, 405 (1997)ADSMathSciNetzbMATHGoogle Scholar
  39. 39.
    Vaidman, L., Aharonov, Y., Albert, D.Z.: How to ascertain the values of \(\sigma _{x}, \sigma _{y}\) and \(\sigma _{z}\) of a spin-1/2 particle. Phys. Rev. Lett. 58, 1385 (1987)ADSMathSciNetGoogle Scholar
  40. 40.
    Englert, B.G., Aharonov, Y.: The mean king’s problem: prime degrees of freedom. Phys. Rev. A 284(1), 1–5 (2001)MathSciNetGoogle Scholar
  41. 41.
    Durt, T., Englert, B.-G., Bengtsson, I., Zyczkowski, K.: On mutually unbiased bases. Int. J. Quantum Inf. 8(04), 535–640 (2010)zbMATHGoogle Scholar
  42. 42.
    Ivanovic, I.D.: An inequality for the sum of entropies of unbiased quantum measurements. J. Phys. A Gen. Phys. 25, 363–365 (1995)Google Scholar
  43. 43.
    Sánchez, J.: Entropic uncertainty and certainty relations for complementary observables. Phys. Lett. Lett. 173, 233 (1993)ADSGoogle Scholar
  44. 44.
    Ren, L.H., Fan, H.: General fine-grained uncertainty relation and the second law of thermodynamics. Phys. Lett. A 90, 052110 (2016)Google Scholar
  45. 45.
    Chen, B., Fei, S.M.: Unextendible maximally entangled bases and mutually unbiased bases. Phys. Rev. A 88(3), 169–169 (2013)Google Scholar
  46. 46.
    Lang, M.D., Cave, C.M.: Quantum discord and the geometry of Bell-diagonal states. Phys. Rev. Lett. 105(15), 150501 (2010)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of MathematicsTonghua Normal UniversityTonghuaChina
  2. 2.Research Center for Mathematics, College of MathematicsTonghua Normal UniversityTonghuaChina
  3. 3.The Branch Campus of Tonghua Normal UniversityTonghuaChina
  4. 4.Department of Mathematics, College of SciencesYanbian UniversityYanjiChina

Personalised recommendations