Advertisement

Entanglement-assisted quantum MDS codes from generalized Reed–Solomon codes

  • Lanqiang Li
  • Shixin ZhuEmail author
  • Li Liu
  • Xiaoshan Kai
Article
  • 59 Downloads

Abstract

Entanglement-assisted quantum error-correcting (EAQEC) codes are a generalization of standard stabilizer quantum codes that can be obtained from arbitrary classical linear codes based on the entanglement-assisted stabilizer formalism. In this paper, by using generalized Reed–Solomon (GRS) codes, we construct two classes of entanglement-assisted quantum error-correcting MDS (EAQEC MDS) codes with parameters
$$\begin{aligned} \left[ \left[ \frac{q^2-1}{2a},\frac{q^2-1}{2a}-2d+c+2,d;c\right] \right] _q, \end{aligned}$$
where q is an odd prime power of the form \(q=2am-1>3\) with \(m\ge 2\), \(1\le c\le 2a-1\) and \(c m+2\le d\le (a+\lceil \frac{c}{2}\rceil )m\), and
$$\begin{aligned} \left[ \left[ \frac{q^2-1}{2a+1},\frac{q^2-1}{2a+1}-2d+c+2,d;c\right] \right] _q, \end{aligned}$$
where q is a prime power of the form \(q=(2a+1)m-1\), \(1\le c\le 2a\) and \(c m+2\le d\le (a+1+\lfloor \frac{c}{2}\rfloor )m\). The EAQEC MDS codes constructed have much larger minimum distance than the known quantum MDS codes with the same length, and most of them are new in the sense that the parameters of EAQEC codes are different from all the previously known ones. In particular, some of our EAQEC MDS codes have much larger d than the known ones that are of the same length and consume the same number of ebits.

Keywords

Entanglement-assisted quantum error-correcting (EAQEC)codes MDS codes Generalized Reed–Solomon (GRS)codes 

Notes

References

  1. 1.
    Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52(4), R2493 (1995)ADSCrossRefGoogle Scholar
  2. 2.
    Steane, A.: Multiple-particle interference and quantum error correction. Proc. R. Soc. Lond. Ser. A 452(1954), 2551–2577 (1996)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chen, H., Ling, S., Xing, C.: Quantum codes from concatenated algebraic-geometric codes. IEEE Trans. Inf. Theory 51(8), 2915–2920 (2005)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Aly, S.A., Klappenecker, A., Sarvepalli, P.K.: On quantum and classical BCH codes. IEEE Trans. Inf. Theory 53(3), 1183–1188 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Li, R., Zuo, F., Liu, Y., Xu, Z.: Hermitian dual containing BCH codes and construction of new quantum codes. Quantum Inf. Comput. 13(1–2), 21–35 (2013)MathSciNetGoogle Scholar
  7. 7.
    Kai, X., Zhu, S.: New quantum MDS codes from negacyclic codes. IEEE Trans. Inf. Theory 59(2), 1193–1197 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kai, X., Zhu, S., Li, P.: Constacyclic codes and some new quantum MDS codes. IEEE Trans. Inf. Theory 60(4), 2080–2085 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Wang, L., Zhu, S.: New quantum MDS codes derived from constacyclic codes. Quantum Inf. Process. 14, 881–889 (2015)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Zhang, T., Ge, G.: Quantum MDS codes with large minimum distance. Des. Codes Cryptogr. 83, 503–517 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Jin, L., Kan, H., Wen, J.: Quantum MDS codes with relatively large minimum distance from Hermitian self-orthogonal codes. Des. Codes Cryptogr. 84(3), 463–471 (2017)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Shi, X., Yue, Q., Chang, Y.: Some quantum MDS codes with large minimum distance from generalized Reed–Solomon codes. Cryptogr. Commun. 10(3), 1–18 (2017)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Fang, W., Fu, F.: Two new classes of quantum MDS codes. Finite Fields Appl. 53, 85–98 (2018)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Brun, T., Devetak, I., Hsieh, M.H.: Correcting quantum errors with entanglement. Science 314(5798), 436–439 (2006)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Hsich, M.H., Devetak, I., Brun, T.A.: General entanglement-assisted quantum error-correcting codes. Phys. Rev. A 76, 062313 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    Wilde, M.M., Brun, T.A.: Optimal entanglement formulas for entanglement-assisted quantum coding. Phys. Rev. A 77, 064302 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    Lai, C.Y., Brun, T.A.: Entanglement increases the error-correcting ability of quantum error-correcting codes. Phys. Rev. A 88, 012320 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Lai, C.Y., Brun, T.A., Wilde, M.M.: Duality in entanglement-assisted quantum error correction. IEEE Trans Inf. Theory 59, 4020–4024 (2013)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Brun, T.A., Devetak, I., Hsieh, M.H.: Catalytic quantum error correction. IEEE Trans. Inf. Theory 60, 3073–3089 (2014)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Lai, C.Y., Brun, T.A., Wilde, M.M.: Dualities and identities for entanglement-assisted quantum codes. Quantum Inf. Process. 13, 957–990 (2014)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Guo, L., Li, R.: Linear Plotkin bound for entanglement-assisted quantum codes. Phys. Rev. A 87, 032309 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    Li, R., Zuo, F., Liu, Y.: A study of skew asymmetric \(q^2\)-cyclotomic coset and its application. J. Air Force Eng. Univ. (Nat. Sci. Ed.) 12(1), 87–89 (2011). (in Chinese)Google Scholar
  23. 23.
    Fan, J., Chen, H., Xu, J.: Construction of \(q-\)ary entanglement-assisted quantum MDS codes wit minimum distance greater than \(q+1\). Quantum Inf. Comput. 16, 423–434 (2016)MathSciNetGoogle Scholar
  24. 24.
    Lu, L., Li, R., Guo, L., Fu, Q.: Maximal entanglement entanglement-assisted quantum codes constructed from linear codes. Quantum Inf. Process. 14(1), 165–182 (2015)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Lu, L., Li, R.: Entanglement-assisted quantum codes constructed from primitive quaternary BCH codes. Int. J. Quantum Inf. 12(03), 1450015 (2014)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Qian, J., Zhang, L.: Entanglement-assisted quantum codes from arbitrary binary linear codes. Des. Codes Cryptogr. 77(1), 193–202 (2015)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Qian, J., Zhang, L.: On MDS linear complementary dual codes and entanglement-assisted quantum codes. Des. Codes Cryptogr. 86(7), 1565–1572 (2018)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Chen, J., Huang, Y., Feng, C., Chen, R.: Entanglement-assisted quantum MDS codes constructed from negacyclic codes. Quantum Inf. Process. 16(2), 303 (2017)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Guenda, K., Jitman, S., Gulliver, T.A.: Constructions of good entanglement-assisted quantum error correcting codes. Des. Codes Cryptogr. 86, 121–136 (2018)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Lu, L., Ma, W., Li, R., Ma, Y., Liu, Y., Cao, H.: Entanglement-assisted quantum MDS codes from constacyclic codes with large minimum distance. Finite Fields Appl. 53, 309–325 (2018)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Liu, X., Yu, L., Hu, P.: New entanglement-assisted quantum codes from \(k\)-Galois dual codes. Finite Fields Appl. 55, 21–32 (2019)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Chen, X., Zhu, S., Kai, X.: Entanglement-assisted quantum MDS codes constructed from constacyclic codes. Quantum Inf. Process. 17, 273 (2018).  https://doi.org/10.1007/s11128-018-2044-1 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error Correcting Codes. North-Holland, The Netherlands (1977)zbMATHGoogle Scholar
  34. 34.
    Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of MathematicsHefei University of TechnologyHefeiPeople’s Republic of China

Personalised recommendations