Behaviors of quantum correlation for atoms coupled with fluctuating electromagnetic field with a perfectly reflecting boundary

  • Zhiming HuangEmail author


We study the behaviors of quantum correlation for two atoms interacted with fluctuating electromagnetic field near a perfectly reflecting boundary. We firstly derive the master equation that governs the system evolution. Then, we discuss the generation, revival and degradation of quantum correlation, which are closely related to boundary effect and atomic polarization direction. Compared with the entanglement behaviors, it is shown that quantum correlation presents better robustness than entanglement, which may be helpful to quantum information processing. Furthermore, the presence of boundary offers us a means for preserving quantum correlation under decoherence and gives us more freedom to adjust the behaviors of quantum correlation.


Quantum correlation Entanglement Dynamics Electromagnetic field 



This work is supported by the National Natural Science Foundation of China (61871205), the Innovation Project of Department of Education of Guangdong Province (2017KTSCX180) and the Jiangmen Science and Technology Plan Project for Basic and Theoretical Research (2018JC01010). Guangdong philosophy and social science planning project (GD15XGL55).


  1. 1.
    Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A Math. Gen. 34, 6899 (2001)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Girolami, D., Tufarelli, T., Adesso, G.: Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 110, 240402 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    Dakić, B., Vedral, V., Brukner, Č.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    Luo, S., Fu, S.: Geometric measure of quantum discord. Phys. Rev. A 82, 034302 (2010)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Huang, Z.M., Qiu, D.W.: Geometric quantum discord under noisy environment. Quantum Inf. Process. 15, 1979 (2016)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Debarba, T., Maciel, T.O., Vianna, R.O.: Witnessed entanglement and the geometric measure of quantum discord. Phys. Rev. A 86, 024302 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    Paula, F.M., de Oliveira, T.R., Sarandy, M.S.: Geometric quantum discord through the Schatten 1-norm. Phys. Rev. A 87, 064101 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    Huang, Z.M., Qiu, D.W., Mateus, P.: Geometry and dynamics of one-norm geometric quantum discord. Quantum Inf. Process. 15, 301 (2016)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Luo, S., Fu, S.: Measurement-induced nonlocality. Phys. Rev. Lett. 106, 120401 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    Hu, M.L., Fan, H.: Measurement-induced nonlocality based on the trace norm. New J. Phys. 17, 033004 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    Qiu, L., Liu, Z.: Hierarchy, factorization law of two measurement-induced nonlocalities and their performances in quantum phase transition. Quantum Inf. Process. 15, 2053 (2016)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    Dakić, B., et al.: Quantum discord as resource for remote state preparation. Nat. Phys. 8, 666 (2012)CrossRefGoogle Scholar
  15. 15.
    Chuan, T.K., et al.: Quantum discord bounds the amount of distributed entanglement. Phys. Rev. Lett. 109, 070501 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Brodutch, A., Modi, K.: Criteria for measures of quantum correlations. Quantum Inf. Comput. 12, 0721 (2012)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Oppenheim, J., Wehner, S.: The uncertainty principle determines the nonlocality of quantum mechanics. Science 330, 1072 (2010)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Casimir, H.B.G.: On the attraction between two perfectly conducting plates. Proc. K. Ned. Akad. Wet. 51, 793 (1948)zbMATHGoogle Scholar
  19. 19.
    Lamb Jr., W.E., Retherford, R.C.: Fine structure of the hydrogen atom by a microwave method. Phys. Rev. 72, 241 (1947)ADSCrossRefGoogle Scholar
  20. 20.
    Zhang, J.L., Yu, H.W.: Entanglement generation in atoms immersed in a thermal bath of external quantum scalar fields with a boundary. Phys. Rev. A 75, 012101 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    Zhang, J.L., Yu, H.W.: Unruh effect and entanglement generation for accelerated atoms near a reflecting boundary. Phys. Rev. D. 75, 104014 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    Yu, H., Hu, J.: Detecting modified vacuum fluctuations due to the presence of a boundary by means of the geometric phase. Phys. Rev. A 86, 064103 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    Huang, Z.M.: Dynamics of quantum correlation of atoms immersed in a thermal quantum scalar fields with a boundary. Quantum Inf. Process. 17, 221 (2018)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Cheng, S.J., Yu, H.W., Hu, J.W.: Entanglement dynamics for uniformly accelerated two-level atoms in the presence of a reflecting boundary. Phys. Rev. D 98, 025001 (2018)ADSCrossRefGoogle Scholar
  25. 25.
    Benatti, F., Floreanini, R.: Controlling entanglement generation in external quantum fields. J. Opt. B Quantum Semiclass. Opt. 7, S429 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    Gorini, V., Kossakowski, A., Surdarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821 (1976)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)zbMATHGoogle Scholar
  29. 29.
    Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)ADSCrossRefGoogle Scholar
  30. 30.
    Birrell, N.D., Davies, P.C.W.: Quantum Fields Theory in Curved Space. Cambridge University Press, Cambridge (1982)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Economics and ManagementWuyi UniversityJiangmenChina

Personalised recommendations