Advertisement

Controlled SWAP attack and improved quantum encryption of arbitrated quantum signature schemes

  • Feng-Lin ChenEmail author
  • Li-Hua Zhang
  • Hai Zhang
Article
  • 43 Downloads

Abstract

The quantum one-time pad (QOTP) usually serves as the quantum encryption to encrypt quantum messages in arbitrated quantum signature (AQS) schemes. The original QOTP is a qubit-by-qubit encryption algorithm with message and encrypted signature always appearing in pair in AQS, which will lead to the vulnerability of the AQS scheme. By comparing the two quantum state pairs in AQS with the C-SWAP attack, it is possible for the attacker to obtain the signer’s key, which leads to the security weakness of AQS. Accordingly, we propose a new attack on AQS scheme for the first time. In order to deal with the attack on AQS scheme, QOTP must be replaced by an improved quantum encryption scheme. Based on QOTP with confusion, we proposed an improved quantum encryption scheme which can resist the attack in AQS scheme. Security analysis shows that the improved quantum encryption scheme works efficiently and securely.

Keywords

Arbitrated quantum signature Quantum one-time pad encryption Controlled SWAP Cryptanalysis Diffusion 

Notes

Acknowledgements

This work was supported in part by Natural Science Foundation of the Education Department of Anhui Province (Grant Nos. KJ2018A0363, KJ2017A356, KJ2017A363), Quality Engineering Project of Colleges and Universities of Anhui Province (Grant No. 2017mooc235) and Anhui Provincial Natural Science Foundation of China (Grant No. 1708085MA10).

References

  1. 1.
    Crandall, R., Pomerance, C.: Chapter 5, Prime Numbers: A Computational Perspective, 2nd edn. Springer, Berlin (2005)zbMATHGoogle Scholar
  2. 2.
    Grover, L.K.: A fast quantum mechanical algorithm for estimating the median. In: Proceedings of the 28th ACM Symposium on Theory of Computing, pp. 212–219 (1996)Google Scholar
  3. 3.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Schmidt, A., Vollmer, U.: Polynomial time quantum algorithm for the computation of the unit group of a number field. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pp. 475–480 (2005)Google Scholar
  5. 5.
    Hallgren, S.: Fast quantum algorithms for computing the unit group and class group of a number fields. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pp. 468–474 (2005)Google Scholar
  6. 6.
    Gottesman, D., Chuang, I.: Quantum digital signatures. arXiv:quant-ph/0105032 (2001)
  7. 7.
    Lamport, L.: Constructing digital signatures from a one-way function. Technical report CSL-98, SRI International (1979)Google Scholar
  8. 8.
    Dunjko, V., Wallden, P., Andersson, E.: Quantum digital signatures without quantum memory. Phys. Rev. Lett. 112(4), 040502 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    Collins, R.J., Donaldson, R.J., Dunjko, V., Wallden, P., Clarke, P.J., Andersson, E., et al.: Realization of quantum digital signatures without the requirement of quantum memory. Phys. Rev. Lett. 113(4), 040502 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    Wallden, P., Dunjko, V., Kent, A., et al.: Quantum digital signatures with quantum key distribution components. Phys. Rev. A 91(4), 042304 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    Amiri, R., Wallden, P., Kent, A., Andersson, E.: Secure quantum signatures using insecure quantum channels. Phys. Rev. A 93(3), 032325 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65(4), 042312 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using Bell states. Phys. Rev. A 79(5), 054307 (2009)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Zou, X.F., Qiu, D.W.: Security analysis and improvements of arbitrated quantum signature schemes. Phys. Rev. A 82(4), 23504–23516 (2010)CrossRefGoogle Scholar
  15. 15.
    Lee, H., Hong, C.H., Kim, H., Lim, J., Yang, H.J.: Arbitrated quantum signature scheme with message recovery. Phys. Lett. A 321(5), 295–300 (2004)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Lu, X., Feng, D.G.: An arbitrated quantum message signature scheme. In: Zhang, J., He, J.H., Fu, Y. (eds.) Lecture Notes in Computer Science, vol. 3314, pp. 1054–1060. Springer, Berlin (2004)Google Scholar
  17. 17.
    Lu, X., Feng, D.G.: Quantum digital signature based on quantum one-way functions. In: The International Conference on Advanced Communication Technology, vol. 1, pp. 514–517. IEEE (2004)Google Scholar
  18. 18.
    Yang, Y.G., Wen, Q.Y.: Arbitrated quantum signature of classical messages against collective amplitude damping noise. Opt. Commun. 283(16), 3198–3201 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Yang, Y.G., Wen, Q.Y.: Erratum: arbitrated quantum signature of classical messages against collective amplitude damping noise. Opt. Commun. 283(19), 3830 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    Luo, Y.P., Hwang, T.: Arbitrated quantum signature of classical messages without using authenticated classical channels. Quantum Inf. Process. 13(1), 113–120 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    Yang, Y.G., Zhou, Z., Teng, Y.W., Wen, Q.Y.: Arbitrated quantum signature with an untrusted arbitrator. Eur. Phys. J. D 61(3), 773–778 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    Zou, X.F., Qiu, D.W., Mateus, P.: Security analyses and improvement of arbitrated quantum signature with an untrusted arbitrator. Int. J. Theor. Phys. 52(9), 3295–3305 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Gao, F., Qin, S.J., Guo, F.Z., Wen, Q.Y.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A 84(2), 022344 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    Choi, J.W., Chang, K.Y., Hong, D.: Security problem on arbitrated quantum signature schemes. Phys. Rev. A 84(6), 062330 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    Zhang, K.J., Zhang, W.W., Li, D.: Improving the security of arbitrated quantum signature against the forgery attack. Quantum Inf. Process. 12(8), 2655–2669 (2013)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Zhang, K.J., Li, D., Su, Q.: Security of the arbitrated quantum signature protocols revisited. Phys. Scr. 89(1), 169–174 (2014)Google Scholar
  27. 27.
    Li, F.G., Shi, J.H.: An arbitrated quantum signature protocol based on the chained CNOT operations encryption. Quantum Inf. Process. 14(6), 2171–2181 (2015)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Zhang, L., Sun, H.W., Zhang, K.J., Jia, H.Y.: An improved arbitrated quantum signature protocol based on the key-controlled chained CNOT encryption. Quantum Inf. Process. 16(3), 1–15 (2017)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Wang, C., Liu, J.W., Shang, T.: Enhanced arbitrated quantum signature scheme using Bell states. Chin. Phys. B 23(6), 060309 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    Zou, X.F., Qiu, D.W.: Arbitrated quantum signature schemes: attacks and security. In: Fellows, M., Tan, X., Zhu, B. (eds.) FAW-AAIM 2013. LNCS, vol. 7924, pp. 48–59. Springer, Berlin (2013)Google Scholar
  31. 31.
    Hwang, T., Luo, Y.P., Chong, S.K.: Comment on “Security analysis and improvements of arbitrated quantum signature schemes”. Phys. Rev. A 85(5), 056301 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    Sun, Z.W., Du, R.G., Wang, B.H., Long, D.Y.: Improving the security of arbitrated quantum signature protocols. arXiv:1107.2459 [quant-ph] (2011)
  33. 33.
    Zhang, W., Qiu, D.W., Zou, X.F., Mateus, P.: Cryptanalysis of a broadcasting multiple blind signature scheme based on quantum GHZ entanglement. Quantum Inf. Process. 16(6), 150 (2017)ADSzbMATHCrossRefGoogle Scholar
  34. 34.
    Zou, X.F., Qiu, D.W.: Attack and improvements of fair quantum blind signature schemes. Quantum Inf. Process. 12, 2071–2085 (2013)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Zou, X.F., Qiu, D.W.: Attacks and improvements of QSDC schemes based on CSS codes. In: Lecture Notes in Artificial Intelligence, ICIC2011, vol. 6215, pp. 239–246 (2011)Google Scholar
  36. 36.
    Boykin, P.O., Roychowdhury, V.: Optimal encryption of quantum bits. Phys. Rev. A 67(4), 645–648 (2003)CrossRefGoogle Scholar
  37. 37.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the International Conference on Computers, Systems & Signal Processing, Bangalore, India, pp. 175–179 (1984)Google Scholar
  38. 38.
    Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Buhrman, H., Cleve, R., Watrous, J., de Wolf, R.: Quantum fingerprinting. Phys. Rev. Lett. 87(16), 167902 (2001)ADSCrossRefGoogle Scholar
  40. 40.
    Gisin, N., Ribordy, G., Tillel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–195 (2001)ADSzbMATHCrossRefGoogle Scholar
  41. 41.
    Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351(1), 23–25 (2006)ADSzbMATHCrossRefGoogle Scholar
  42. 42.
    Deng, F.G., Zhou, P., Li, X.H., Li, C.Y., Zhou, H.Y.: Robustness of two-way quantum communication protocols against Trojan horse attack. arXiv:quant-ph/0508168 (2005)
  43. 43.
    Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4), 656–715 (1949)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Luo, Y.P., Hwang, T.: Comment on “An arbitrated quantum signature protocol based on the chained CNOT operations encryption”. arXiv:1512.00711 [quant-ph] (2015)

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mathematics and Computational ScienceAnqing Normal UniversityAnqingChina
  2. 2.School of Physics and Electric EngineeringAnqing Normal UniversityAnqingChina

Personalised recommendations