Advertisement

Quantum teleportation of an arbitrary two-qubit state by using two three-qubit GHZ states and the six-qubit entangled state

  • Dong-fen LiEmail author
  • Rui-jin Wang
  • Edward Baagyere
Article
  • 103 Downloads

Abstract

In this paper, we show that current two different quantum channels of two three-qubit GHZ states and the six-qubit entangled state can be used for quantum teleportation of an arbitrary two-qubit state deterministically. Moreover, we propose two distinct protocols for quantum teleportation of an arbitrary two-qubit state within a three-qubit, by using a single-qubit measurement under the basis and also using a two-qubit projective measurement under the basis \(\{|+\rangle ,|-\rangle \}\), so as to get 16 kinds of possible measured results with equal probability of 1/4. Furthermore, the deterministic quantum teleportation of an arbitrary two-qubit states can be realized in a cavity quantum electrodynamics systems. This is unique, in that a cluster state has a maximal persistence when compared with a entangled state and it is also more robust against decoherence. Furthermore, the schemes are secure against internal and external attacks.

Keywords

Quantum teleportation Arbitrary two-qubit state Two three-qubit GHZ states Six-qubit entangled state QED 

Notes

Acknowledgements

This work is supported by National Natural Science Foundation of China (61802033, 61751110), Postdoctoral Research Foundation of China (2018M643453), also supported by the Opening Project of Guangdong Provincial Key Laboratory of Information Security Technology (2017B030314131).

References

  1. 1.
    Cao, Z.L., Yang, M., Guo, G.C.: The scheme for realizing probabilistic teleportation of atomic states and purifying the quantum channel on cavity QED. Phys. Lett. A 308(5), 349–354 (2003)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69(20), 2881 (1992)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Ye, L., Guo, G.C.: Scheme for implementing quantum dense coding in cavity QED. Phys. Rev. A 71(3), 034304 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Saha, D., Panigrahi, P.K.: N-qubit quantum teleportation, information splitting and superdense coding through the composite GHZ–Bell channel. Quantum Inf. Process. 11(2), 615–628 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Nie, Y.Y., Li, Y.H., Liu, J.C., et al.: Quantum information splitting of an arbitrary three-qubit state by using two four-qubit cluster states. Quantum Inf. Process. 10(3), 297–305 (2011)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Nie, Y., Li, Y., Liu, J., et al.: Quantum information splitting of an arbitrary three-qubit state by using a genuinely entangled five-qubit state and a Bell-state. Quantum Inf. Process. 11(2), 563–569 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hou, K., Liu, G.H., Zhang, X.Y., et al.: An efficient scheme for five-party quantum state sharing of an arbitrary m-qubit state using multiqubit cluster states. Quantum Inf. Process. 10(4), 463–473 (2011)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Man, Z.X., Xia, Y.J., An, N.B.: Quantum state sharing of an arbitrary multiqubit state using nonmaximally entangled GHZ states. Eur. Phys. J. D 42(2), 333–340 (2007)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Zheng, S.B.: Splitting quantum information via W states. Phys. Rev. A 74(5), 054303 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    Dong, L., Wang, J.X., Li, Q.Y., et al.: Teleportation of a general two-photon state employing a polarization-entangled \(\chi \) state with nondemolition parity analyses. Quantum Inf. Process. 15(7), 2955–2970 (2016)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Luo, M.X., Deng, Y.: Quantum splitting an arbitrary three-qubit state with \(\chi \)-state. Quantum Inf. Process. 12(2), 773–784 (2013)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    You-Bang, Z., Qun-Yong, Z., Yu-Wu, W.: Schemes for splitting quantum information with four-particle genuine entangled states. Commun. Theor. Phys. 53(5), 847 (2010)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Xiu, X.M., Li, Q.Y., Dong, L., et al.: Distributing a multi-photon polarization-entangled state with unitary fidelity via arbitrary collective noise channels. Quantum Inf. Process. 14(1), 361–372 (2015)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Nie, Y., Li, Y., Wang, Z.: Semi-quantum information splitting using GHZ-type states. Quantum Inf. Process. 12(1), 437–448 (2013)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Zhang, W., Liu, Y.M., Yin, X.F., et al.: Splitting four ensembles of two-qubit quantum information via three Einstein–Podolsky–Rosen pairs. Eur. Phys. J. D 55(1), 189–195 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    Dong, L., Xiu, X.M., Ren, Y.P., et al.: Teleportation of a two-qubit arbitrary unknown state using a four-qubit genuine entangled state with the combination of bell-state measurements. J. Exp. Theor. Phys. 116(1), 15–19 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    Bennett, C.H., Brassard, G., Crépeau, C., et al.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1999)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Murao, M., Jonathan, D., Plenio, M.B., et al.: Quantum telecloning and multiparticle entanglement. Phys. Rev. A 59(1), 156 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648 (1999)ADSCrossRefGoogle Scholar
  21. 21.
    Wang, X.W., Zhang, D.Y., Tang, S.Q., et al.: Multiparty hierarchical quantum-information splitting. J. Phys. B: At. Mol. Opt. Phys. 44(3), 035505 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    Wang, X.W., Zhang, D.Y., Tang, S.Q., et al.: Hierarchical quantum information splitting with six-photon cluster states. Int. J. Theor. Phys. 49(11), 2691–2697 (2010)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Wang, X.W., Xia, L.X., Wang, Z.Y., et al.: Hierarchical quantum-information splitting. Opt. Commun. 283(6), 1196–1199 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    Wang, R.J., Li, D.F., Deng, F.H.: Quantum information splitting of a two-qubit bell state using a five-qubit entangled state. Int. J. Theor. Phys. 54(9), 3229–3237 (2015)CrossRefGoogle Scholar
  25. 25.
    Wang, R.J., Li, D.F., Qin, Z.G.: An immune quantum communication model for dephasing noise using four-qubit cluster state. Int. J. Theor. Phys. 55(1), 609–616 (2016)CrossRefGoogle Scholar
  26. 26.
    Li, D.F., Wang, R.J., Zhang, F.L., Deng, F.H.: Quantum information splitting of arbitrary two-qubit state by using four-qubit cluster state and Bell-state. Quantum Inf. Process. 14(3), 1103–1116 (2015)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Luo, M.X., Ma, S.Y., Chen, X.B., et al.: Hybrid quantum-state joining and splitting assisted by quantum dots in one-side optical microcavities. Phys. Rev. A 91(4), 042326 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    Wei, Y.Z., Jiang, M.: Multi-qudit state sharing via various high-dimensional Bell channels. Quantum Inf. Process. 14(3), 1091–1102 (2015)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Imamog, A., Awschalom, D.D., Burkard, G., et al.: Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83(20), 4204 (1999)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Cyber SecurityChengdu University of TechnologyChengduChina
  2. 2.School of Information and Software EngineeringUniversity of Electronic Science and Technology of ChinaChengduChina
  3. 3.Guangdong Provincial Key Laboratory of Information Security TechnologyGuangzhouChina

Personalised recommendations