The critical detection efficiency for closing the detection loophole of some modified Bell inequalities

  • Dan-Dan LiEmail author
  • Fei Gao
  • Ya Cao
  • Qiao-Yan Wen


As we know, the violations of Bell inequalities reveal nonlocality. On the other hand, loopholes in any Bell tests can cause the issues in the interpretation of the above conclusion, since an apparent violation of Bell inequality may not correspond to a real violation of local realism. The detection loophole, as an important example, arises when the overall detection efficiency is not larger than a certain threshold value. With the detection loophole, the above-mentioned effect can be observed in many experiments where the partial detected events can cause apparent Bell violations, while the entire ensemble cannot violate them. However, the real violations of Bell inequalities are necessary for device independence quantum information processing tasks. So, it is crucial to investigate the critical detection efficiency for closing the detection loophole of Bell inequalities. Here, by considering some novel Bell inequalities (Mironowicz and Pawłowski in Phys Rev A 88:032319, 2013), we give the critical detection efficiency for closing the detection loophole of these Bell inequalities. Furthermore, we prove the tightness of these detection efficiency bounds. That is, if detection efficiency is not larger than the critical one, we construct local hidden variable models to reproduce these violations. To sum up, if the detection efficiency of experiment exceeds the critical one derived here, the detection loophole is eliminated.


Detection efficiency The detection loophole Bell violations Local hidden variable models 



We appreciate the anonymous reviewers for their valuable suggestions. This work is supported by NSFC (Grant Nos. 61802033, 61671082, 61672110, 61572081, 61701553), Science and Technology Department of Hennan (No.172102210275).


  1. 1.
    Einstein, A., Podolsky, B., Rosen, N.: Can quantummechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777 (1935)ADSCrossRefGoogle Scholar
  2. 2.
    Bell, J.: On the Einstein–Podolsy–Rosen paradox. Physics 1, 195 (1964)CrossRefGoogle Scholar
  3. 3.
    Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86, 419 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    Giustina, M., Versteegh, M.A.M., Wengerowsky, S., et al.: Significant-loophole-free test of Bell’s theorem with entangled photons. Phys. Rev. Lett. 115, 250401 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    Rosenfeld, W., Burchardt, D., Garthoff, R., et al.: Event-ready bell test using entangled atoms simultaneously closing detection and locality loopholes. Phys. Rev. Lett. 119, 010402 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    Garg, A., Mermin, N.D.: Detector inefficiencies in the Einstein–Podolsky–Rosen experiment. Phys. Rev. D 35, 3831 (1987)ADSCrossRefGoogle Scholar
  7. 7.
    Eberhard, P.H.: Background level and counter efficiencies required for a loophole free Einstein–Podolsky–Rosen experiment. Phys. Rev. A 47, 747–750 (1993)ADSCrossRefGoogle Scholar
  8. 8.
    Acín, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    Bardyn, C.E., Liew, T.C., Massar, S., Mckague, M., Scarani, V.: Device-independent state estimation based on Bell’s inequalities. Phys. Rev. A 80, 062327 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    Acín, A., Gisin, N., Masanes, L.: From Bell’s theorem to secure quantum key distribution. Phys. Rev. Lett. 97, 120405 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    Vazirani, U., Vidick, T.: Fully device-independent quantum key distribution. Phys. Rev. Lett. 113, 140501 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    Pironio, S., Acín, A., Massar, S., de La Giroday, A.B., Matsukevich, D.N., Maunz, P., Olmschenk, S., Hayes, D., Luo, L., Manning, T.A., Monroe, C.: Random numbers certified by Bell’s theorem. Nature 464, 1021 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Pironio, S., Massar, S.: Security of practical private randomness generation. Phys. Rev. A 87, 012336 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    Fehr, S., Gelles, R., Schaffner, C.: Security and composability of randomness expansion from Bell inequalities. Phys. Rev. A 87, 012335 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    Mironowicz, P., Pawłowski, M.: Robustness of quantum-randomness expansion protocols in the presence of noise. Phys. Rev. A 88, 032319 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Li, H.-W., Yin, Z.Q., Wang, S., Qian, Y.J., Chen, W., Guo, G.C., Han, Z.F.: Randomness determines practical security of BB84 quantum key distribution. Sci. Rep. 5, 16200 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    Li, D.-D., Wen, Q.Y., Wang, Y.K., Zhou, Y.Q., Gao, F.: Security of semi-device-independent random number expansion protocols. Sci. Rep. 5, 15543 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    Li, D.-D., Zhou, Y.Q., Gao, F., Li, X.H., Wen, Q.Y.: Effects of measurement dependence on generalized Clauser–Horne–Shimony–Holt Bell test in the single-run and multiple-run scenarios. Phys. Rev. A 94, 012104 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    Li, H.-W., Pawłowski, M., Yin, Z.Q., Guo, G.C., Han, Z.F.: Semi-device-independent randomness certification using \(n\rightarrow 1\) quantum random access codes. Phys. Rev. A 85, 052308 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    Jakobi, M., Simon, C., Gisin, N., Bancal, J.D., Branciard, C., Walenta, N.: Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. A 83, 022301 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    Gao, F., Liu, B., Huang, W., Wen, Q.Y.: Postprocessing of the oblivious key in quantum private query. IEEE. J. Sel. Top. Quant. 21, 6600111 (2015)Google Scholar
  22. 22.
    Wei, C.Y., Wang, T.Y., Gao, F.: Practical quantum private query with better performance in resisting joint-measurement attack. Phys. Rev. A 93, 042318 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    Wei, C.Y., Cai, X.Q., Liu, B., Wang, T.Y., Gao, F.: A generic construction of quantum-oblivious-key-transfer-based private query with ideal database security and zero failure. IEEE Trans. Comput. 99, 2–8 (2018)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Liu, B., Gao, F., Wei, C., Wen, Q.Y.: Qkd-based quantum private query without a failure probability. Sci. China Phys. Mech. Astron. 58, 100301 (2015)CrossRefGoogle Scholar
  25. 25.
    Rowe, M.A., et al.: Experimental violation of a Bell’s inequality with efficient detection. Nature 409, 791–794 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    Matsukevich, D.N., Maunz, P., Moehring, D.L., Olmschenk, S., Monroe, C.: Bell inequality violation with two remote atomic qubits. Phys. Rev. Lett. 100, 150404 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    Ansmann, M., et al.: Violation of Bell’s inequality in Josephson phase qubits. Nature 461, 504–506 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    Hofmann, J., et al.: Heralded entanglement between widely separated atoms. Science 337, 72–75 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    Giustina, M., et al.: Bell violation using entangled photons without the fair-sampling assumption. Nature 497, 227–230 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    Christensen, B.G., McCusker, K.T., Altepeter, J.B., et al.: Detection-loophole-free test of quantum nonlocality, and applications. Phys. Rev. Lett. 111, 130406 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    Hensen, B., Bernien, H., Dréau, A.E., et al.: Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    Larsson, J.-Å.: Bell’s inequality and detector inefficiency. Phys. Rev. A 57, 3304 (1998)ADSCrossRefGoogle Scholar
  33. 33.
    Cabello, A., Larsson, J.-Å., Rodríguez, D.: Minimum detection efficiency required for a loophole-free violation of the Braunstein–Caves chained Bell inequalities. Phys. Rev. A 79, 062109 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    Pütz, G., Martin, A., Gisin, N., Aktas, D., Fedrici, B., Tanzilli, S.: Quantum nonlocality with arbitrary limited detection efficiency. Phys. Rev. Lett. 116, 010401 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    Xiang, Y., Wang, H.-X., Hong, F.-Y.: Detection efficiency in the loophole-free violation of Svetlichny’s inequality. Phys. Rev. A 86, 034102 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    Cabello, A., Rodríguez, D., Villanueva, I.: Necessary and sufficient detection efficiency for the Mermin inequalities. Phys. Rev. Lett. 101, 120402 (2008)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Cañas, G., Barra, J.F., Gómez, E.S., Lima, G., Sciarrino, F., Cabello, A.: Detection efficiency for loophole-free Bell tests with entangled states affected by colored noise. Phys. Rev. A 87, 012113 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    Massar, S., Pironio, S.: Violation of local realism versus detection efficiency. Phys. Rev. A 68, 062109 (2003)ADSCrossRefGoogle Scholar
  39. 39.
    Larsson, J.-Å., Semitecolos, J.: Strict detector-efficiency bounds for n-site Clauser–Horne inequalities. Phys. Rev. A 63, 022117 (2001)ADSCrossRefGoogle Scholar
  40. 40.
    Vértesi, T., Pironio, S., Brunner, N.: Closing the detection loophole in Bell experiments using qudits. Phys. Rev. Lett. 104, 060401 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    Massar, S.: Nonlocality, closing the detection loophole, and communication complexity. Phys. Rev. A 65, 032121 (2002)ADSCrossRefGoogle Scholar
  42. 42.
    Pál, K.F., Vértesi, T.: Closing the detection loophole in tripartite Bell tests using the W state. Phys. Rev. A 92, 022103 (2015)ADSCrossRefGoogle Scholar
  43. 43.
    Pál, K.F., Vértesi, T.: Bell inequalities violated using detectors of low efficiency. Phys. Rev. A 92, 052104 (2015)ADSCrossRefGoogle Scholar
  44. 44.
    Pál, K.F., Vértesi, T., Brunner, N.: Closing the detection loophole in multipartite Bell tests using Greenberger–Horne–Zeilinger states. Phys. Rev. A 86, 062111 (2012)ADSCrossRefGoogle Scholar
  45. 45.
    Cao, Z., Peng, T.: Tight detection efficiency bounds of Bell tests in no-signaling theories. Phys. Rev. A. 94, 042126 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Networking and Switching TechnologyBeijing University of Posts and TelecommunicationsBeijingChina
  2. 2.State Key Laboratory of CryptologyBeijingChina

Personalised recommendations