Role of two-qubit entangling operators in the modified Eisert–Wilkens–Lewenstein approach of quantization

  • V. Vijayakrishnan
  • S. BalakrishnanEmail author


One of the central ideas in the theory of quantum games is to quantize the classical games in a proper mathematical and physical framework. In order to understand the prowess of quantumness, it is ensured that classical game is the subset of quantum game. This has been stressed and established in Eisert, Wilkens and Lewenstein (EWL) quantization scheme, by imposing a commutation condition between the entangling operators and the pure strategies of the game. In the present work, we modify the EWL scheme by relaxing this condition, with an aim to explore the significance of two-qubit entangling operators. We establish two results: firstly, conversion of symmetric to potential game under suitable conditions of initial states and strategies. Secondly, non-conversion of a zero-sum game to nonzero-sum game irrespective of initial states and strategies. Since these results are shown to be consistent with that of Marinatto and Weber quantization scheme, we justify the equivalence of two quantization schemes.


EWL scheme MW scheme Entangling operators 



  1. 1.
    Osborne, M.J.: An Introduction to Game theory. Oxford University Press, Oxford (2004)Google Scholar
  2. 2.
    Meyer, D.A.: Quantum strategies. Phys. Rev. Lett. 82, 1052 (1999)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Grabbe, J.O.: An introduction to quantum game theory. arXiv:quant-ph/0506219v1
  4. 4.
    Flitney, A.P., Abbott, D.: An introduction to quantum game theory. Fluct. Noise Lett. 2, R175 (2002)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Guo, H., Zhang, J., Koehler, G.J.: A survey of quantum games. Decis. Support Syst. 46, 318 (2008)CrossRefGoogle Scholar
  6. 6.
    Khan, F.S., Solmeyer, N., Balu, R., et al.: Quantum games: a review of the history, current state, and interpretation. Quant. Inf. Process. 17, 309 (2018)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Eisert, J., Wilkens, M., Lewenstein, M.: Quantum games and quantum strategies. Phys. Rev. Lett. 83, 3077 (1999)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Marinatto, L., Weber, T.: A quantum approach to static games of complete information. Phys. Lett. A 272, 291 (2000)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Nawaz, A., Toor, A.H.: Generalized quantization scheme for two-person non-zero sum games. J. Phys. A. 37, 11457 (2004)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Vijayakrishnan, V., Balakrishnan, S.: Correspondence between quantization schemes for two-player non-zero sum games and CNOT complexity. Quantum Inf. Process. 17, 102 (2018)ADSCrossRefGoogle Scholar
  11. 11.
    Khan, F.S., Phoenix, S.J.D.: Gaming the quantum. Quantum Inf. Comput. 13(34), 231 (2013)MathSciNetGoogle Scholar
  12. 12.
    Li, Q., Iqbal, A., Perc, M., Chen, M., Abbott, D.: Coevolution of quantum and classical strategies on evolving random netwroks. PLoS ONE 8(7), e68423 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    Li, Q., Chen, M., Perc, M., Iqbal, A., Abbott, D.: Effects of adaptive degrees of trust on coevolution of quantum strategies on scale-free networks. Sci. Rep. 3, 2949 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    Pykacz, J., Frackiewicz, P.: Arbiter as the third man in classical and quantum games. Int. J. Theor. Phys. 49(12), 3243 (2010)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Balakrishnan, S.: Influence of initial conditions in \(2\times 2\) symmetric games. Quantum Inf. Process. 13, 2645 (2014)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Benjamin, S.C., Hayden, P.M.: Comment on quantum games and quantum strategies. Phys. Rev. Lett. 87(6), 069801 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    van Enk, S.J.: Classical rules in quantum strategies. Phys. Rev. Lett. 84, 789 (2000)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Zhang, J., Vala, J., Whaley, K.B., Sastry, S.: Geometric theory of nonlocal two-qubit operations. Phys. Rev. A 67, 042313 (2003)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Rezakhani, A.T.: Characterization of two-qubit perfect entanglers. Phys. Rev. A 70, 052313 (2004)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Makhlin, Y.: Nonlocal properties of two-qubit gates and mixed states, and the optimization of quantum computations. Quantum Inf. Process. 67, 243 (2002)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Balakrishnan, S., Sankaranarayanan, R.: Operator-Schmidt decomposition and the geometrical edges of two-qubit gates. Quantum Inf. Process. 10(4), 449 (2011)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Szabó, G., Fáth, G.: Evoloutionary games on graphs. Phys. Rep. 446, 97 (2007)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Perc, M.: Phase transitions in models of human cooperation. Phys. Letts. A 380, 2803 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    Amaral, M.A., Matjaž, P., Wardil, L., Szolnoki, A., da Silva, E.J., Jafferson, K.L.S.: Role-separating ordering in social dilemmas controlled by topological frustration. Phys. Rev. E 95, 032307 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, School of Advanced SciencesVIT UniversityVelloreIndia

Personalised recommendations