An optional remote state preparation protocol for a four-qubit entangled state

  • Binayak S. Choudhury
  • Soumen SamantaEmail author


In this paper, we introduce a remote state preparation protocol for the case of a known four-qubit entangled state in which there are two possible receivers and the sender has the option of choosing one of the two possible parties for a preparation of the intended state at the end of the chosen party. The sender begins with a measurement on a two-qubit system in which the measurement basis is chosen by using the known information of the state. After that she exercises her option which is exclusively her own prerogative. The protocol has four components depending on the four different measurement results of the sender. The scheme is compared in terms of efficiency with other contemporary remote state preparation protocols for similar purposes.


Quantum entanglement Remote state preparation Quantum resources and measurement Option Unitary operation Efficiency 



This work is supported by the University Grants Commission of India. We gratefully acknowledge the suggestions of the referees.


  1. 1.
    Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Lo, H.K.: Classical-communication cost in distributed quantum-information processing. A generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1990)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Yang, Y.G., Wen, Q.Y., Zhu, F.C.: An efficient two-step quantum key distribution protocol with orthogonal product states. Chin. Phys. B 16, 910–914 (2007)CrossRefGoogle Scholar
  6. 6.
    Zhang, Z.J., Man, Z.X.: Many-agent controlled teleportation of multi-qubit quantum information. Phys. Lett. A 341(1), 55–59 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    Yang, K., Huang, L., Yang, L.W.: Quantum teleportation via GHZ-like state. Int. J. Theor. Phys. 48, 516–521 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Choudhury, B.S., Samanta, S.: Simultaneous perfect teleportation of three 2-qubit states. Quantum Inf. Process. 16, 230 (2017). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Yan, A.: Bidirectional controlled teleportation via six-qubit cluster state. Int. J. Theor. Phys. 52, 3870–3873 (2013). MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Li, D., Cao, Z.: Teleportation of two-particle entangled state via cluster state. Commun. Theor. Phys. 47, 464–466 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    Yu, L.Z., Wu, T.: Probabilistic teleportation of three-qubit entangled state via five-qubit cluster state. Int. J. Theor. Phys. 52(5), 1461–1465 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Yang, Y.-Q., Zha, X.-W., Yu, Y.: Asymmetric bidirectional controlled teleportation via seven-qubit cluster state. Int. J. Theor. Phys. 55, 4197–4204 (2016). CrossRefzbMATHGoogle Scholar
  13. 13.
    Nandi, K., Mazumdar, C.: Quantum teleportation of a two qubit state using GHZ-like state. Int. J. Theor. Phys. 53, 1322–1324 (2014)CrossRefGoogle Scholar
  14. 14.
    Choudhury, B.S., Samanta, S.: A multi-hop teleportation protocol of arbitrary four-qubit states through intermediate nodes. Int. J. Quant. Inf. 16(3), 1850026 (2018)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Bennett, C.H., Divincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    Wang, D., Liu, Y-m, Zhang, Z-j: Remote preparation of a class of three-qubit states. Opt. Commun. 281, 871–875 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    Wang, D., Ye, L.: Optimizing scheme for remote preparation of four-particle cluster-like entangled states. Int. J. Theor. Phys. 50, 2748–2757 (2011). CrossRefzbMATHGoogle Scholar
  18. 18.
    Zhan, Y.-B., Fu, H., Li, X.-W., Ma, P.-C.: Deterministic remote preparation of a four-qubit cluster-type entangled state. Int. J. Theor. Phys. 52, 2615–2622 (2013)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Wang, D.: Remote preparation of an arbitrary two-particle pure state via nonmaximally entangled states and positive operator-valued measurement. Int. J. Quantum Inf. 8(8), 1265–1275 (2010)CrossRefGoogle Scholar
  20. 20.
    Zhao, S.-Y., Fu, H., Li, X.-W., Chen, G.-B., Ma, P.-C., Zhan, Y.-B.: Efficient and economic schemes for remotely preparing a four-qubit cluster-type entangled state. Int. J. Theor. Phys. 53, 2485–2491 (2014)CrossRefGoogle Scholar
  21. 21.
    Ma, S.-Y., Chen, W.-L., Qu, Z.-G., Tang, P.: Controlled remote preparation of an arbitrary four-qubit \(\chi \)-state via partially entangled channel. Int. J. Theor. Phys. 56, 1653–1664 (2017)CrossRefGoogle Scholar
  22. 22.
    Yuan, H., Liu, Y.M., Zhang, W., Zhang, Z.J.: Optimizing resource consumption, operation complexity and efficiency in quantum-state sharing. J. Phys. B: At. Mol. Opt. Phys. 41, 145506 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    Choudhury, B.S., Samanta, S.: Perfect joint remote state preparation of arbitrary six-qubit cluster-type states. Quantum Inf. Process. 17, 175 (2018)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Wang, J., Zhang, Q., Tang, C.: Multiparty controlled quantum secure direct communication using GHZ state. Opt. Commun. 266, 732–737 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    Agrawal, P., Pati, A.: Perfect teleportation and superdense coding with W states. Phys. Rev. A 74(6), 062320 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    Yeo, Y., Chua, W.K.: Teleportation and dense coding with genuine multipartite entanglement. Phys. Rev. Lett. 96, 060502 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    Muralidharan, S., Panigrahi, P.K.: Quantum-information splitting using multipartite cluster states. Phys. Rev. A 78, 062333 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    Zhang, Q.N., Li, C.C., Li, Y.H., Nie, Y.Y.: Quantum secure direct communication based on four-qubit cluster states. Int. J. Theor. Phys. 52(1), 22–27 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsIndian Institute of Engineering Science and TechnologyShibpur, HowrahIndia

Personalised recommendations