Advertisement

Extensions of generalized two-qubit separability probability analyses to higher dimensions, additional measures and new methodologies

  • Paul B. SlaterEmail author
Article
  • 25 Downloads

Abstract

We first seek the rebit–retrit counterpart to the (formally proven by Lovas and Andai) two-rebit Hilbert–Schmidt separability probability of \(\frac{29}{64} =\frac{29}{2^6} \approx 0.453125\) and the qubit–qutrit analogue of the (strongly supported) value of \(\frac{8}{33} = \frac{2^3}{3 \cdot 11} \approx 0.242424\). We advance the possibilities of a rebit–retrit value of \(\frac{860}{6561} =\frac{2^2 \cdot 5 \cdot 43}{3^8} \approx 0.131078\) and a qubit–qutrit one of \(\frac{27}{1000} = (\frac{3}{10})^3 =\frac{3^3}{2^3 \cdot 5^3} = 0.027\). These four values for \(2 \times m\) systems (\(m=2,3\)) suggest certain numerator/denominator sequences involving powers of m, which we further investigate for \(m>3\). Additionally, we find that the Hilbert–Schmidt separability/PPT-probabilities for the two-rebit, rebit–retrit and two-retrit X-states all equal \(\frac{16}{3 \pi ^2} \approx 0.54038\), as well as more generally, that the probabilities based on induced measures are equal across these three sets. Then, we extend the master Lovas–Andai formula to induced measures. For instance, the two-qubit function (\(k=0\)) is \(\tilde{\chi }_{2,0}(\varepsilon )=\frac{1}{3} \varepsilon ^2 (4 -\varepsilon ^2)\), yielding \(\frac{8}{33}\), while its \(k=1\) induced measure counterpart is \(\tilde{\chi }_{2,1}(\varepsilon )=\frac{1}{4} \varepsilon ^2 \left( 3-\varepsilon ^2\right) ^2\), yielding \(\frac{61}{143} =\frac{61}{11 \cdot 13} \approx 0.426573\), where \(\varepsilon \) is a singular-value ratio. Interpolations between Hilbert–Schmidt and operator monotone (Bures, \(\sqrt{x}\)) measures are also studied. Using a recently-developed golden-ratio-related (quasirandom sequence) approach, current (significant digits) estimates of the two-rebit and two-qubit Bures separability probabilities are 0.15709 and 0.07331, respectively–with an additional indicator that the latter probability may be \(\frac{25}{341} =\frac{5^2}{11 \cdot 31} \approx 0.07331378\).

Keywords

Separability probabilities Qubit–qudit Two-qubits Two-rebits Hilbert–Schmidt measure Random matrix theory Rebit–retrits Qubit–qutrits Quaternions PPT-probabilities Operator monotone functions Bures measure Induced measure Lovas–Andai functions Quasirandom sequences Golden ratio 

Notes

Acknowledgements

My considerable thanks to Charles Dunkl for contributing the appendices, and his general support and advice. This research was supported by the National Science Foundation under Grant No. NSF PHY-1748958.

References

  1. 1.
    Lovas, A., Andai, A.: Invariance of separability probability over reduced states in \(4\times 4\) bipartite systems. J. Phys. A Math. Theor 50, 295303 (2017)CrossRefGoogle Scholar
  2. 2.
    Życzkowski, K., Sommers, H.-J.: Hilbert–Schmidt volume of the set of mixed quantum states. J. Phys. A Math. Gen. 36, 10115 (2003)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Bengtsson, I., Życzkowski, K.: Geometry of Quantum States: An Introduction to Quantum Entanglement. Cambridge University Press, Cambridge (2017)CrossRefGoogle Scholar
  4. 4.
    Slater, P.B.: Master Lovas–Andai and equivalent formulas verifying the \(\frac{8}{33}\) two-qubit Hilbert–Schmidt separability probability and companion rational-valued conjectures. Quantum Inf. Process. 17, 83 (2018a)ADSCrossRefGoogle Scholar
  5. 5.
    Milz, S., Strunz, W.T.: Volumes of conditioned bipartite state spaces. J. Phys. A Math. Theor. 48, 035306 (2014)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Fei, J., Joynt, R.: Numerical computations of separability probabilities. Rep. Math. Phys. 78, 177 (2016)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Shang, J., Seah, Y.-L., Ng, H.K., Nott, D.J., Englert, B.-G.: Monte Carlo sampling from the quantum state space. I. New J. Phys. 17, 043017 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    Slater, P.B.: A concise formula for generalized two-qubit Hilbert-Schmidt separability probabilities. J. Phys. A Math. Theor. 46, 445302 (2013)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Slater, P.B., Dunkl, C.F.: Moment-based evidence for simple rational-valued Hilbert–Schmidt generic 2\(\times \) 2 separability probabilities. J. Phys. A Math. Theor. 45, 095305 (2012)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Slater, P.B.: Dyson indices and Hilbert–Schmidt separability functions and probabilities. J. Phys. A Math. Theor. 40, 14279 (2007)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Adler, S.L.: Quaternionic Quantum Mechanics and Quantum Fields, vol. 88. Oxford University Press on Demand, Oxford (1995)zbMATHGoogle Scholar
  12. 12.
    Szarek, S.J., Bengtsson, I., Życzkowski, K.: On the structure of the body of states with positive partial transpose. J. Phys. A Math. Gen. 39, L119 (2006)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Samuel, J., Shivam, K., Sinha, S.: Lorentzian geometry of qubit entanglement (2018). arXiv preprint arXiv:1801.00611
  14. 14.
    Avron, J., Kenneth, O.: Entanglement and the geometry of two qubits. Ann. Phys. 324, 470 (2009)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Braga, H., Souza, S., Mizrahi, S.S.: Geometrical meaning of two-qubit entanglement and its symmetries. Phys. Rev. A 81, 042310 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    Gamel, O.: Entangled Bloch spheres: Bloch matrix and two-qubit state space. Phys. Rev. A 93, 062320 (2016)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Jevtic, S., Pusey, M., Jennings, D., Rudolph, T.: Quantum steering ellipsoids. Phys. Rev. Lett. 113, 020402 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    Aubrun, G., Szarek, S.J.: Alice and Bob Meet Banach: The Interface of Asymptotic Geometric Analysis and Quantum Information Theory, vol. 223. American Mathematical Soc, Providence (2017)zbMATHGoogle Scholar
  19. 19.
    Życzkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: Volume of the set of separable states. Phys. Rev. A 58, 883 (1998)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Petz, D., Sudár, C.: Geometries of quantum states. J. Math. Phys. 37, 2662 (1996)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Rexiti, M., Felice, D., Mancini, S.: The volume of two-qubit states by information geometry. Entropy 20, 146 (2018)ADSCrossRefGoogle Scholar
  22. 22.
    Singh, R., Kunjwal, R., Simon, R.: Relative volume of separable bipartite states. Phys. Rev. A 89, 022308 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    Batle, J., Abdel-Aty, M.: Geometric approach to the distribution of quantum states in bipartite physical systems. JOSA B 31, 2540 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    Andai, A.: Volume of the quantum mechanical state space. J. Phys. A Math. Gen. 39, 13641 (2006)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Życzkowski, K., Sommers, H.-J.: Induced measures in the space of mixed quantum states. J. Phys. A Math. Gen. 34, 7111 (2001)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Slater, P.B.: A priori probability that two qubits are unentangled. Quantum Inf. Process. 1, 397 (2002)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Slater, P.B.: Silver mean conjectures for 15-dimensional volumes and 14-dimensional hyperareas of the separable two-qubit systems. J. Geom. Phys. 53, 74 (2005)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Slater, P.B., Dunkl, C.F.: Formulas for rational-valued separability probabilities of random induced generalized two-qubit states. Adv. Math. Phys. 2015, 621353 (2015)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Slater, P.B.: Formulas for generalized two-qubit separability probabilities. Adv. Math. Phys. 2018, 9365213 (2018b)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Slater, P.B.: Invariance of bipartite separability and PPT-probabilities over Casimir invariants of reduced states. Quantum Inf. Process. 15, 3745 (2016a)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Gerdt, V., Mladenov, D., Palii, Y., Khvedelidze, A.: SU (6) Casimir invariants and SU (2)–SU (3) scalars for a mixed qubit–qutrit state. J. Math. Sci. 179, 690 (2011)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Byrd, M.S., Khaneja, N.: Characterization of the positivity of the density matrix in terms of the coherence vector representation. Phys. Rev. A 68, 062322 (2003)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Al Osipov, V., Sommers, H.-J., Życzkowski, K.: Random Bures mixed states and the distribution of their purity. J. Phys. A Math. Theor. 43, 055302 (2010)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    Życzkowski, K., Penson, K.A., Nechita, I., Collins, B.: Generating random density matrices. J. Math. Phys. 52, 062201 (2011)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Augusiak, R., Demianowicz, M., Horodecki, P.: Universal observable detecting all two-qubit entanglement and determinant-based separability tests. Phys. Rev. A 77, 030301 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    Johnston, N.: Non-positive-partial-transpose subspaces can be as large as any entangled subspace. Phys. Rev. A 87, 064302 (2013a)ADSCrossRefGoogle Scholar
  37. 37.
    Mendonça, P.E., Marchiolli, M.A., Hedemann, S.R.: Maximally entangled mixed states for qubit–qutrit systems. Phys. Rev. A 95, 022324 (2017)ADSCrossRefGoogle Scholar
  38. 38.
    Provost, S.B.: Moment-based density approximants. Math. J. 9, 727 (2005)Google Scholar
  39. 39.
    Życzkowski, K.: Volume of the set of separable states. II. Phys. Rev. A 60, 3496 (1999)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    Qian, C., Li, J.-L., Qiao, C.-F.: State-independent uncertainty relations and entanglement detection. Quantum Inf. Process. 17, 84 (2018)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    Li, J.-L., Qiao, C.-F.: Separable decompositions of bipartite mixed states. Quantum Inf. Process. 17, 92 (2018).  https://doi.org/10.1007/s11128-018-1862-5 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Johnston, N.: Separability from spectrum for qubit-qudit states. Phys. Rev. A 88, 062330 (2013b)ADSCrossRefGoogle Scholar
  43. 43.
    Hildebrand, R.: Semidefinite descriptions of low-dimensional separable matrix cones. Linear Algebra Appl. 429, 901 (2008)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Baumgartner, B., Hiesmayr, B.C., Narnhofer, H.: State space for two qutrits has a phase space structure in its core. Phys. Rev. A 74, 032327 (2006)ADSCrossRefGoogle Scholar
  45. 45.
    Dunkl, C.F., Slater, P.B.: Separability probability formulas and their proofs for generalized two-qubit X-matrices endowed with Hilbert–Schmidt and induced measures. Random Matrices Theory Appl. 4, 1550018 (2015)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Slater, P.B.: Exact Bures probabilities that two quantum bits are classically correlated. Eur. Phys. J. B Condens Matter Complex Syst. 17, 471 (2000)CrossRefGoogle Scholar
  47. 47.
    Šafránek, D.: Discontinuities of the quantum Fisher information and the Bures metric. Phys. Rev. A 95, 052320 (2017)ADSCrossRefGoogle Scholar
  48. 48.
    Penson, K.A., Życzkowski, K.: Product of ginibre matrices: Fuss–Catalan and raney distributions. Phys. Rev. E 83, 061118 (2011)ADSCrossRefGoogle Scholar
  49. 49.
    Borot, G., Nadal, C.: Purity distribution for generalized random Bures mixed states. J. Phys. A Math. Theor. 45, 075209 (2012)ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    Leobacher, G., Pillichshammer, F.: Introduction to Quasi-Monte Carlo Integration and Applications. Springer, Berlin (2014)CrossRefGoogle Scholar
  51. 51.
    The unreasonable effectiveness of quasirandom sequences. http://extremelearning.com.au/unreasonable-effectiveness-of-quasirandom-sequences/
  52. 52.
    Devroye, L.: Non-uniform Random Variate Generation. Springer, Berlin (1986)CrossRefGoogle Scholar
  53. 53.
    Khvedelidze, A., Rogojin, I.: On the generation of random ensembles of qubits and qutrits computing separability probabilities for fixed rank states. In: EPJ Web of Conferences, EDP Sciences, vol. 173, p. 02010 (2018)Google Scholar
  54. 54.
    Tilma, T., Byrd, M., Sudarshan, E.: A parametrization of bipartite systems based on SU (4) Euler angles. J. Phys. A Math. Gen. 35, 10445 (2002)ADSMathSciNetCrossRefGoogle Scholar
  55. 55.
    Slater, P.B.: Eigenvalues, separability and absolute separability of two-qubit states. J. Geom. Phys. 59, 17 (2009)ADSMathSciNetCrossRefGoogle Scholar
  56. 56.
    Slater, P.B.: Quasirandom estimation of bures two-qubit and two-rebit separability probabilities (2019). arXiv preprint arXiv:1901.09889
  57. 57.
    Sommers, H.-J., Życzkowski, K.: Bures volume of the set of mixed quantum states. J. Phys. A Math. Gen. 36, 10083 (2003)ADSMathSciNetCrossRefGoogle Scholar
  58. 58.
    Slater, P.B.: Bloch radii repulsion in separable two-qubit systems (2015). arXiv preprint arXiv:1506.08739
  59. 59.
    Slater, P.B.: Two-qubit separability probabilities as joint functions of the Bloch radii of the qubit subsystems. Int. J. Quantum Inf. 14, 1650042 (2016b)MathSciNetCrossRefGoogle Scholar
  60. 60.
    Altafini, C.: Tensor of coherences parametrization of multiqubit density operators for entanglement characterization. Phys. Rev. A 69, 012311 (2004)ADSCrossRefGoogle Scholar
  61. 61.
    Ruskai, M.B., Werner, E.M.: Bipartite states of low rank are almost surely entangled. J. Phys. A Math. Theor. 42, 095303 (2009)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Kavli Institute for Theoretical PhysicsUniversity of California, Santa BarbaraSanta BarbaraUSA

Personalised recommendations