Advertisement

Demonstration of entanglement purification and swapping protocol to design quantum repeater in IBM quantum computer

  • Bikash K. Behera
  • Swarnadeep Seth
  • Antariksha Das
  • Prasanta K. PanigrahiEmail author
Article
  • 256 Downloads

Abstract

Quantum communication is a secure way to transfer quantum information and to communicate with legitimate parties over distant places in a network. Although communication over a long distance has already been attained, technical problem arises due to unavoidable loss of information through the transmission channel. Quantum repeaters can extend the distance scale using entanglement swapping and purification scheme. Here we demonstrate the working of a quantum repeater by the above two processes. We use IBM’s real quantum processor ‘ibmqx4’ to create two pair of entangled qubits and design an equivalent quantum circuit which consequently swaps the entanglement between the two pairs. We then develop a novel purification protocol which enhances the degree of entanglement in a noisy channel that includes combined errors of bit-flip, phase-flip and phase-change error. We perform quantum state tomography to verify the entanglement swapping between the two pairs of qubits and working of the purification protocol.

Keywords

Quantum repeater Quantum communication IBM quantum experience 

Notes

Acknowledgements

B.K.B., S.S. and A.D. are financially supported by DST Inspire Fellowship. We are extremely grateful to IBM team and IBM Quantum Experience project. The discussions and opinions developed in this paper are only those of the authors and do not reflect the opinions of IBM or IBM QE team.

Author Contributions

BKB has developed the quantum circuits and guided SS and AD to design the quantum circuits on the IBM’s quantum processor and perform the experiments. BKB, SS and AD have written the paper. AD has drawn all the figures in vector graphics format. BKB, SS and AD have completed the project under the guidance of PKP

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial as well as non-financial interests.

References

  1. 1.
    Duan, L.-M., Lukin, M.D., Cirac, J.I., Zoller, P.: Long-distance quantum communication with atomic ensembles and linear optics. Nature (London) 414, 413–418 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    Gisin, N., Thew, R.: Quantum communication. Nat. Photon. 1, 165–171 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    Song, S., Wang, C.: Recent development in quantum communication. Chin. Sci. Bull. 57, 4694–4700 (2012)CrossRefGoogle Scholar
  4. 4.
    Orieux, A., Diamanti, E.: Recent advances on integrated quantum communications. J. Opt. 18, 083002 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    Żukowski, M., Zeilinger, A., Horne, M.A., Ekert, A.K.: “Event-ready-detectors” bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287–4290 (1993)ADSCrossRefGoogle Scholar
  6. 6.
    Briegel, H.-J., Dür, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    Peng, C.-Z., et al.: Experimental long-distance decoy-state quantum key distribution based on polarization encoding. Phys. Rev. Lett. 98, 010505 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    Rosenberg, D., et al.: Long-distance decoy-state quantum key distribution in optical fiber. Phys. Rev. Lett. 98, 010503 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    Schmitt-Manderbach, T., et al.: Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett. 98, 010504 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    Zhao, B., Chen, Z.-B., Chen, Y.-A., Schmiedmayer, J., Pan, J.-W.: Robust long-distance quantum communication with atomic ensembles and linear optics. Phys. Rev. Lett. 98, 240502 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    Ursin, R., et al.: Entanglement-based quantum communication over 144 km. Nat. Phys. 3, 481–486 (2007)CrossRefGoogle Scholar
  12. 12.
    Ekert, A.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Simon, C., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    Lo, H.-K., Curty, M., Tamaki, K.: Secure quantum key distribution. Nat. Photon. 8, 595–604 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    Elliott, C.: Building the quantum network. New J. Phys. 4, 46 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    Kimble, H.J.: The quantum internet. Nature 453, 1023–1030 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    Tang, J.-S., Zhou, Z.-Q., Li, C.-F.: Towards a quantum network. Nat. Sci. Rev. 4, 168–169 (2017)CrossRefGoogle Scholar
  18. 18.
    Matsuoka, F., Tomita, A., Okamoto, A.: Entanglement generation by communication using phase-squeezed light with photon loss. Phys. Rev. A 93, 032308 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    Aspelmeyer, M., et al.: Long-distance free-space distribution of entangled photons. Science 301, 621–623 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    Aspelmeyer, K.J., et al.: Distributing entanglement and single photons through an intra-city, free-space quantum channel. Opt. Express 13, 202–209 (2005)CrossRefGoogle Scholar
  21. 21.
    Peng, C.-Z., et al.: Experimental free-space distribution of entangled photon pairs over a noisy ground atmosphere of 13 km. Phys. Rev. Lett. 94, 150501 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    Das, S., Khatri, S., Dowling, J.P.: Robust quantum network architectures and topologies for entanglement distribution. Phys. Rev. A 97, 012335 (2018)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Pirandola, S., Laurenza, R., Ottaviani, C., Banchi, L.: Fundamental limits of repeaterless quantum communications. Nat. Commun. 8, 15043 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    Bennett, C.H., et al.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 73, 3081–3084 (1993)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Bouwmeester, D., et al.: Experimental quantum teleportation. Nature 390, 575–579 (1997)ADSCrossRefGoogle Scholar
  26. 26.
    Riebe, M., et al.: Experimental quantum teleportation with atoms. Nature 429, 734–737 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    Barrett, M.D., et al.: Deterministic quantum teleportation of atomic qubits. Nature 429, 737–73 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    Ursin, R., et al.: Quantum teleportation link across the Danube. Nature 430, 849 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    Bennett, C.H., et al.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1991)ADSCrossRefGoogle Scholar
  30. 30.
    Dür, W., Briegel, H.-J., Cirac, J.I., Zoller, P.: Quantum repeaters based on entanglement purification. Phys. Rev. A 59, 169 (1999)ADSCrossRefGoogle Scholar
  31. 31.
    Loock, P.V., Ladd, T.D., Sanaka, K., Yamaguchi, F., Nemoto, K., Munro, W.J., Yamamoto, Y.: Hybrid quantum repeater using bright coherent light. Phys. Rev. Lett. 96, 240501 (2006)CrossRefGoogle Scholar
  32. 32.
    Jiang, L., Taylor, J.M., Nemoto, K., Munro, W.J., Meter, R.V., Lukin, M.D.: Quantum repeater with encoding. Phys. Rev. A 79, 032325 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    Fowler, A.G., Wang, D.S., Hill, C.D., Ladd, T.D., Meter, R.V., Hollenberg, L.C.L.: Surface code quantum communication. Phys. Rev. Lett. 104, 180503 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    Munro, W.J., Stephens, A.M., Devitt, S.J., Harrison, K.A., Nemoto, K.: Quantum communication without the necessity of quantum memories. Nat. Photon. 6, 777 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    Chou, C.-W., et al.: Functional quantum nodes for entanglement distribution over scalable quantum networks. Science 316, 1316–1318 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    Pan, J.-W., Bouwmeester, D., Weinfurter, H., Zeilinger, A.: Experimental entanglement swapping: entangling photons that never interacted. Phys. Rev. Lett. 80, 3891–3894 (1998)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Riebe, M., Monz, T., Kim, K., Villar, A.S., Schindler, P., Chwalla, M., Hennrich, M., Blatt, R.: Deterministic entanglement swapping with an ion-trap quantum computer. Nat. Phys. 4, 839–842 (2008)CrossRefGoogle Scholar
  38. 38.
    Xiong, W., Ye, L.: Schemes for entanglement concentration of two unknown partially entangled states with cross-Kerr nonlinearity. J. Opt. Soc. Am. B 28, 2030 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    Sheng, Y.B., Deng, F.G., Zhou, Y.: Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys. Rev. A 77, 062325 (2008)ADSCrossRefGoogle Scholar
  40. 40.
    Wang, H.F., Zhang, S.: Linear optical generation of multipartite entanglement with conventional photon detectors. Phys. Rev. A 79, 042336 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    Sangouard, N., Simon, C., de Riedmatten, H., Gisin, N.: Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33–80 (2011)ADSCrossRefGoogle Scholar
  42. 42.
    Munro, W.J., Harrison, K.A., Stephens, A.M., Devitt, S.J., Nemoto, K.: From quantum multiplexing to high-performance quantum networking. Nat. Photon. 4, 792–796 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    Muralidharan, S., Kim, J., Lütkenhaus, N., Lukin, M.D., Jiang, L.: Ultrafast and fault-tolerant quantum communication across long distances. Phys. Rev. Lett. 112, 250501 (2014)ADSCrossRefGoogle Scholar
  44. 44.
    Muralidharan, S., Li, L., Kim, J., Lütkenhaus, N., Lukin, M.D., Jiang, L.: Optimal architectures for long distance quantum communication. Sci. Rep. 6, 20463 (2016)ADSCrossRefGoogle Scholar
  45. 45.
    Chen, Z.-B., Zhao, B., Chen, Y.-A., Schmiedmayer, J., Pan, J.-W.: Fault-tolerant quantum repeater with atomic ensembles and linear optics. Phys. Rev. A 76, 022329 (2007)ADSCrossRefGoogle Scholar
  46. 46.
    Sangouard, N., et al.: Robust and efficient quantum repeaters with atomic ensembles and linear optics. Phys. Rev. A 77, 062301 (2008)ADSCrossRefGoogle Scholar
  47. 47.
    Trugenberger, C.A.: Probabilistic quantum memories. Phys. Rev. Lett. 87, 067901 (2001)ADSCrossRefGoogle Scholar
  48. 48.
    Gouët, J.-L.L., Moiseev, S.: Quantum memory. J. Phys. B At. Mol. Opt. Phys. 45, 120201 (2012)CrossRefGoogle Scholar
  49. 49.
    Yuan, Z.-S., Chen, Y.-A., Zhao, B., Chen, S., Schmiedmayer, J., Pan, J.-W.: Experimental demonstration of a BDCZ quantum repeater node. Nature 454, 1098–1101 (2008)ADSCrossRefGoogle Scholar
  50. 50.
    IBM Quantum Experience. http://research.ibm.com/ibm-q/
  51. 51.
    Hegade, N.N., Behera, B.K., Panigrahi, P.K.: Experimental Demonstration of Quantum Tunneling in IBM Quantum Computer. arXiv preprint arXiv:1712.07326 (2017)
  52. 52.
    Majumder, A., Mohapatra, S., Kumar, A.: Experimental Realization of Secure Multiparty Quantum Summation Using Five-Qubit IBM Quantum Computer on Cloud. arXiv preprint arXiv:1707.07460 (2017)
  53. 53.
    Sisodia, M., Shukla, A., Thapliyal, K., Pathak, A.: Design and experimental realization of an optimal scheme for teleportion of an n-qubit quantum state. Quantum Inf. Process. 16, 292 (2017)ADSCrossRefGoogle Scholar
  54. 54.
    Dash, A., Rout, S., Behera, B.K., Panigrahi, P.K.: A Verification Algorithm and Its Application to Quantum Locker in IBM Quantum Computer. arXiv preprint arXiv:1710.05196 (2017)
  55. 55.
    Wootton, J.R.: Demonstrating non-Abelian braiding of surface code defects in a five qubit experiment. Quantum Sci. Technol. 2, 015006 (2017)ADSCrossRefGoogle Scholar
  56. 56.
    Berta, M., Wehner, S., Wilde, M.M.: Entropic uncertainty and measurement reversibility. New J. Phys. 18, 073004 (2016)ADSCrossRefGoogle Scholar
  57. 57.
    Deffner, S.: Demonstration of entanglement assisted invariance on IBM’s quantum experience. Heliyon 3, e00444 (2016)CrossRefGoogle Scholar
  58. 58.
    Huffman, E., Mizel, A.: Violation of noninvasive macrorealism by a superconducting qubit: implementation of a Leggett–Garg test that addresses the clumsiness loophole. Phys. Rev. A 95, 032131 (2017)ADSCrossRefGoogle Scholar
  59. 59.
    Alsina, D., Latorre, J.I.: Experimental test of Mermin inequalities on a five-qubit quantum computer. Phys. Rev. A 94, 012314 (2016)ADSCrossRefGoogle Scholar
  60. 60.
    García-Martín, D., Sierra, G.: Five Experimental Tests on the 5-Qubit IBM Quantum Computer. arXiv preprint arXiv:1712.05642 (2017)
  61. 61.
    Das, S., Paul, G.: Experimental test of Hardy’s paradox on a five-qubit quantum computer. arXiv preprint arXiv:1712.04925 (2017)
  62. 62.
    Behera, B.K., Banerjee, A., Panigrahi, P.K.: Experimental realization of quantum cheque using a five-qubit quantum computer. Quantum Inf. Process. 16, 312 (2016)ADSMathSciNetCrossRefGoogle Scholar
  63. 63.
    Yalçinkaya, İ., Gedik, Z.: Optimization and experimental realization of quantum permutation algorithm. Phys. Rev. A 96, 062339 (2017)ADSCrossRefGoogle Scholar
  64. 64.
    Ghosh, D., Agarwal, P., Pandey, P., Behera, B.K., Panigrahi, P.K.: Automated error correction in IBM quantum computer and explicit generalization. Quantum Inf. Process. 17, 153 (2018)ADSMathSciNetCrossRefGoogle Scholar
  65. 65.
    Kandala, A., Mezzacapo, A., Temme, K., Takita, M., Brink, M., Chow, J.M., Gambetta, J.M.: Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 242–246 (2017)ADSCrossRefGoogle Scholar
  66. 66.
    Gangopadhyay, S., Manabputra Behera, B.K., Panigrahi, P.K.: Generalization and demonstration of an entanglement-based Deutsch–Jozsa-like algorithm using a 5-qubit quantum computer. Quantum Inf. Process. 17, 160 (2018)ADSMathSciNetCrossRefGoogle Scholar
  67. 67.
    Alvarez-Rodriguez, U., Sanz, M., Lamata, L., Solano, E.: Quantum Artificial Life in an IBM Quantum Computer. arXiv preprint arXiv:1711.09442 (2017). Saipriya Satyajit, Karthik Srinivasan,
  68. 68.
    Schuld, M., Fingerhuth, M., Petruccione, F.: Implementing a distance-based classifier with a quantum interference circuit. EPL 119, 60002 (2017)ADSCrossRefGoogle Scholar
  69. 69.
    Sisodia, M., et al.: Experimental realization of nondestructive discrimination of Bell states using a five-qubit quantum computer. Phys. Lett. A 381, 3860–3874 (2017)ADSCrossRefGoogle Scholar
  70. 70.
    Devoret, M.H., Scholekopf, R.J.: Superconducting circuits for quantum information: an outlook. Science 339, 1169–1174 (2013)ADSCrossRefGoogle Scholar
  71. 71.
    Samal, J.R., Gupta, M., Panigrahi, P.K., Kumar, A.: Non-destructive discrimination of Bell states by NMR using a single ancilla qubit. J. Phys. B At. Mol. Opt. Phys. 43, 095508 (2007)CrossRefGoogle Scholar
  72. 72.
    Xin, T., et al.: Quantum state tomography via reduced density matrices. Phys, Rev. Lett. 118, 020401 (2008)MathSciNetCrossRefGoogle Scholar
  73. 73.
    Cramer, M., et al.: Efficient quantum state tomography. Nat. Comm. 1, 1147 (2010)CrossRefGoogle Scholar
  74. 74.
    Wimberger, S.: Applications of fidelity measures to complex quantum systems. Philos. Trans. A Math. Phys. Eng. Sci. 13, 20150153 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019
corrected publication 2019

Authors and Affiliations

  1. 1.Department of Physical SciencesIndian Institute of Science Education and Research KolkataMohanpurIndia
  2. 2.Department of PhysicsUniversity of Central FloridaOrlandoUSA
  3. 3.QuTechDelft University of Technology (TU Delft)DelftThe Netherlands

Personalised recommendations