Dissipative quantum repeater

  • M. Ghasemi
  • M. K. TavassolyEmail author


By implementing a quantum repeater protocol, our aim in this paper is the production of entanglement between two two-level atoms locating far from each other. To make our model close to experimental realizations, the atomic and field sources of dissipations are also taken into account. We consider eight of such atoms (\(1, 2, \ldots , 8\)) sequentially located in a line which begins (ends) with atom 1 (8). We suppose that initially the four atomic pairs \((i,i+1), i=1, 3, 5, 7,\) are mutually prepared in maximally entangled states. Clearly, the atoms 1, 8, the furthest atoms which we want to entangle them are never entangled, initially. To achieve the purpose of paper, at first, we perform the interaction between the atoms (2, 3) as well as (6, 7) which results in the entanglement creation between (1, 4) and (5, 8), separately. In the mentioned interactions, we take into account spontaneous emission rate (\(\varGamma \)) for atoms and field decay rate from the cavities (\(\kappa \)) as two important and unavoidable dissipation sources. In the continuation, we transfer the entanglement to the objective pair (1, 8) by two methods: (i) Bell state measurement and (ii) cavity quantum electrodynamics. The successfulness of our protocol is shown via the evaluation of concurrence as the well-established measure of entanglement between the two (far apart) qubits (1, 8). We also observe that if one chooses the cavity and the atom such that \(\kappa =\varGamma \) holds, the effect of dissipations is effectively removed from the entanglement dynamics in our model. In this condition, the time evolutions of concurrence and success probability are regularly periodic. Also, concurrence and success probability reach their maximum values in a large time interval by decreasing the detuning in the presence of dissipation.


Quantum repeater Entanglement swapping Atom–field interaction Dissipation source 



  1. 1.
    Briegel, H.J., Dür, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81(26), 5932 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    Dür, W., Briegel, H.J., Cirac, J., Zoller, P.: Erratum: quantum repeaters based on entanglement purification. Phys. Rev. A 60(1), 725 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    Duan, L.M., Lukin, M., Cirac, J.I., Zoller, P.: Long-distance quantum communication with atomic ensembles and linear optics. Nature 414(6862), 413 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    Jiang, L., Muralidharan, S., Kim, J., Lutkenhaus, N., Lukin, M.: Ultrafast and fault-tolerant quantum communication over long distances. In: Frontiers in Optics, pp. FTu1A–1. Optical Society of America (2014)Google Scholar
  5. 5.
    Curty, M., Lewenstein, M., Lütkenhaus, N.: Entanglement as a precondition for secure quantum key distribution. Phys. Rev. Lett. 92(21), 217–903 (2004)CrossRefGoogle Scholar
  6. 6.
    Jennewein, T., Simon, C., Weihs, G., Weinfurter, H., Zeilinger, A.: Quantum cryptography with entangled photons. Phys. Rev. Lett. 84(20), 4729 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    Hsieh, M., Kempe, J., Myrgren, S., Whaley, K.B.: An explicit universal gate-set for exchange-only quantum computation. Quantum Inf. Process. 2(4), 289–307 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Shi, J., Shi, R., Tang, Y., Lee, M.H.: A multiparty quantum proxy group signature scheme for the entangled-state message with quantum fourier transform. Quantum Inf. Process. 10(5), 653–670 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Moehring, D., Maunz, P., Olmschenk, S., Younge, K., Matsukevich, D., Duan, L.M., Monroe, C.: Entanglement of single-atom quantum bits at a distance. Nature 449(7158), 68 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    Bernien, H., Hensen, B., Pfaff, W., Koolstra, G., Blok, M., Robledo, L., Taminiau, T., Markham, M., Twitchen, D., Childress, L., et al.: Heralded entanglement between solid-state qubits separated by three metres. Nature 497(7447), 86 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    Hofmann, J., Krug, M., Ortegel, N., Gérard, L., Weber, M., Rosenfeld, W., Weinfurter, H.: Heralded entanglement between widely separated atoms. Science 337(6090), 72–75 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    Eghbali-Arani, M., Ameri, V.: Entanglement of two hybrid optomechanical cavities composed of bec atoms under bell detection. Quantum Inf. Process. 16(2), 47 (2017)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Zukowski, M., Zeilinger, A., Horne, M.A., Ekert, A.K.: Event-ready-detectors Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287–4290 (1993)ADSCrossRefGoogle Scholar
  14. 14.
    Ghasemi, M., Tavassoly, M.K.: Entanglement swapping to a qutrit–qutrit atomic system in the presence of Kerr medium and detuning parameter. Eur. Phys. J. Plus 131(9), 297 (2016)CrossRefGoogle Scholar
  15. 15.
    Ghasemi, M., Tavassoly, M.K., Nourmandipour, A.: Dissipative entanglement swapping in the presence of detuning and Kerr medium: Bell state measurement method. Eur. Phys. J. Plus 132(12), 531 (2017)CrossRefGoogle Scholar
  16. 16.
    Nourmandipour, A., Tavassoly, M.K.: Entanglement swapping between dissipative systems. Phys. Rev. A 94(2), 022–339 (2016)CrossRefGoogle Scholar
  17. 17.
    Nourmandipour, A., Tavassoly, M.K.: A novel approach to entanglement dynamics of two two-level atoms interacting with dissipative cavities. Eur. Phys. J. Plus 130(7), 148 (2015)CrossRefGoogle Scholar
  18. 18.
    Liao, Q., Fang, G., Wang, Y., Ahmad, M., Liu, S.: Entanglement swapping in two independent Jaynes–Cummings models. Eur. Phys. J. D 61(2), 475–479 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    Haroche, S.: Cavity quantum electrodynamics: a review of Rydberg atom-microwave experiments on entanglement and decoherence. In: AIP Conference Proceedings, vol. 464, pp. 45–66. AIP (1999)Google Scholar
  20. 20.
    Chun-Hua, Y., Yong-Cheng, O., Zhi-Ming, Z.: Entanglement swapping with atoms separated by long distance. Chin. Phys. 15(8), 1793 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    Yang, M., Zhao, Y., Song, W., Cao, Z.L.: Entanglement concentration for unknown atomic entangled states via entanglement swapping. Phys. Rev. A 71(4), 044–302 (2005)CrossRefGoogle Scholar
  22. 22.
    Pakniat, R., Tavassoly, M.K., Zandi, M.H.: A novel scheme of hybrid entanglement swapping and teleportation using cavity QED in the small and large detuning regimes and quasi-Bell state measurement method. Chin. Phys. B 25(10), 100–303 (2016)CrossRefGoogle Scholar
  23. 23.
    Pakniat, R., Tavassoly, M.K., Zandi, M.H.: Entanglement swapping and teleportation based on cavity QED method using the nonlinear atom-field interaction: cavities with a hybrid of coherent and number states. Opt. Commun. 382, 381–385 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    Jaynes, E.T., Cummings, F.W.: Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51(1), 89–109 (1963)CrossRefGoogle Scholar
  25. 25.
    Tavis, M., Cummings, F.W.: Exact solution for an N-moleculeradiation-field Hamiltonian. Phys. Rev. 170(2), 379 (1968)ADSCrossRefGoogle Scholar
  26. 26.
    Di Fidio, C., Vogel, W., Khanbekyan, M., Welsch, D.G.: Photon emission by an atom in a lossy cavity. Phys. Rev. A 77(4), 043–822 (2008)CrossRefGoogle Scholar
  27. 27.
    Di Fidio, C., Vogel, W.: Entanglement signature in the mode structure of a single photon. Phys. Rev. A 79(5), 050–303 (2009)CrossRefGoogle Scholar
  28. 28.
    Man, Z., Xia, Y., An, N.: Quantum dissonance induced by a thermal field and its dynamics in dissipative systems. Eur. Phys. J. D 64(2–3), 521–529 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    Grünwald, P., Singh, S., Vogel, W.: Raman-assisted rabi resonances in two-mode cavity qed. Phys. Rev. A 83(6), 063–806 (2011)CrossRefGoogle Scholar
  30. 30.
    Zhang, G.F., Xie, X.C.: Entanglement between two atoms in a damping Jaynes–Cummings model. Eur. Phys. J. D 60(2), 423–427 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    Baghshahi, H.R., Tavassoly, M.K., Behjat, A.: Entanglement of a damped non-degenerate \(\diamond \)-type atom interacting nonlinearly with a single-mode cavity. Eur. Phys. J. Plus 131(4), 80 (2016)Google Scholar
  32. 32.
    Shore, B.W., Knight, P.L.: The Jaynes–Cummings model. J. Mod. Opt. 40(7), 1195–1238 (1993)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Barnett, S.M., Jeffers, J.: The damped Jaynes–Cummings model. J. Mod. Opt. 54(13–15), 2033–2048 (2007)ADSzbMATHCrossRefGoogle Scholar
  34. 34.
    Luong, D., Jiang, L., Kim, J., Lütkenhaus, N.: Overcoming lossy channel bounds using a single quantum repeater node. Appl. Phys. B 122(4), 96 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    Li, L., Albert, V.V., Michael, M., Muralidharan, S., Zou, C., Jiang, L.: Quantum repeater with continuous variable encoding. In: APS Division of Atomic, Molecular and Optical Physics Meeting Abstracts (2016)Google Scholar
  36. 36.
    Wang, T.J., Song, S.Y., Long, G.L.: Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities. Phys. Rev. A 85(6), 062–311 (2012)Google Scholar
  37. 37.
    McMahon, P.L., De Greve, K.: Towards quantum repeaters with solid-state qubits: spin-photon entanglement generation using self-assembled quantum dots. In: Predojevic, A., Mitchell, M.W (eds) Engineering the Atom-Photon Interaction, Chap. 14, pp. 365–402. Springer (2015)Google Scholar
  38. 38.
    Han, Yang, He, Bing, Heshami, Khabat, Li, Cheng-Zu, Simon, Christoph: Quantum repeaters based on Rydberg-blockade-coupled atomic ensembles. Phys. Rev. A 81(5), 052–311 (2010)CrossRefGoogle Scholar
  39. 39.
    Zhao, Bo, Müller, Markus, Hammerer, Klemens, Zoller, Peter: Efficient quantum repeater based on deterministic Rydberg gates. Phys. Rev. A 81(5), 052–329 (2010)Google Scholar
  40. 40.
    Van Meter, R., Ladd, T.D., Munro, W., Nemoto, K.: System design for a long-line quantum repeater. IEEE/ACM Trans. Netw. 17(3), 1002–1013 (2009)CrossRefGoogle Scholar
  41. 41.
    Yuan, Z.S., Chen, Y.A., Zhao, B., Chen, S., Schmiedmayer, J., Pan, J.W.: Experimental demonstration of a BDCZ quantum repeater node. Nature 454(7208), 1098 (2008)ADSCrossRefGoogle Scholar
  42. 42.
    Ladd, Thaddeus D., van Loock, Peter, Nemoto, Kae, Munro, William J., Yamamoto, Yoshihisa: Hybrid quantum repeater based on dispersive CQED interactions between matter qubits and bright coherent light. New J. Phys. 8(9), 184 (2006)ADSCrossRefGoogle Scholar
  43. 43.
    Vollbrecht, Karl Gerd H., Muschik, Christine A., Cirac, J.Ignacio: Entanglement distillation by dissipation and continuous quantum repeaters. Phys. Rev. Lett. 107(12), 120–502 (2011)CrossRefGoogle Scholar
  44. 44.
    Xu, P., Yong, H.L., Chen, L.K., Liu, C., Xiang, T., Yao, X.C., Lu, H., Li, Z.D., Liu, N.L., Li, L., et al.: Two-hierarchy entanglement swapping for a linear optical quantum repeater. Phys. Rev. Lett. 119(17), 170–502 (2017)CrossRefGoogle Scholar
  45. 45.
    Chen, L.K., Yong, H.L., Xu, P., Yao, X.C., Xiang, T., Li, Z.D., Liu, C., Lu, H., Liu, N.L., Li, L., et al.: Experimental nested purification for a linear optical quantum repeater. Nat. Photonics 11(11), 695 (2017)ADSCrossRefGoogle Scholar
  46. 46.
    Zheng, S.B., Guo, G.C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85(11), 2392 (2000)ADSCrossRefGoogle Scholar
  47. 47.
    Ai-Xi, C., Li, D.: Entanglement swapping between atom and cavity and generation of entangled state of cavity fields. Chin. Phys. 16(4), 1027 (2007)ADSCrossRefGoogle Scholar
  48. 48.
    Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80(10), 2245 (1998)ADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Atomic and Molecular Group, Faculty of PhysicsYazd UniversityYazdIran

Personalised recommendations