Advertisement

Quantum correlation swapping in parallel and antiparallel two-qubit mixed states

  • Chuanmei Xie
  • Yimin Liu
  • Jianlan Chen
  • Zhanjun ZhangEmail author
Article
  • 78 Downloads

Abstract

Quantum correlations (QCs) in some mixed states are thought as important resources in performing certain quantum communication tasks. Recently, it is found that (Azam et al. in Phys Rev A 91:012304, 2015) separable two-qubit states with maximally mixed marginals can be divided into two classes, i.e., parallel and antiparallel two-qubit mixed states. Moreover, a profound difference between their QCs quantified by more probing measures is revealed. In this paper, we study the swapping of QCs in these two classes of states. To be concrete, before the swapping, the two initial states are selected as two parallel two-qubit mixed states, or two antiparallel ones, or a parallel one and an antiparallel one. It is found that, according to two QC quantifiers, i.e., OQD (Ollivier and Zurek in Phys Rev Lett 88:017901, 2001) and LQU (Girolami et al. in Phys Rev Lett 110:240402, 2013), although QCs in the two parallel initial states are different from those in the two antiparallel initial states, the differences are eliminated after the QC swapping. However, if the initial states are selected as a parallel one and an antiparallel one, contrast to the case of two parallel ones as initial states, then after QC swapping, differences emerge.

Keywords

Quantum correlation swapping Parallel two-qubit mixed state Antiparallel two-qubit mixed state Bell state measurement 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NNSFC) under Grant Nos. 61701002, 11375011 and 11372122, the Natural Science Foundation of Anhui province under Grant Nos. 1808085MA23 and 1408085MA12 and the 211 Project of Anhui University.

References

  1. 1.
    Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)ADSCrossRefGoogle Scholar
  2. 2.
    Bohr, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 48, 696 (1935)ADSCrossRefGoogle Scholar
  3. 3.
    Ekert, A.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557 (1992)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Long, G.L., Liu, X.S.: Theoretically efficient high capacity quantum key distribution scheme. Phys. Rev. A 65, 032302 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    Bennett, C.H., Brassard, G., Crepeau, C., et al.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Zhang, Z.J., Liu, Y.M.: Perfect teleportation of arbitrary n-qudit states using different quantum channels. Phys. Lett. A 372, 28 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    Cheung, C.Y., Zhang, Z.J.: Criterion for faithful teleportation with an arbitrary multiparticle channel. Phys. Rev. A 80, 022327 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    Bouwmeester, D., et al.: Experimental quantum teleportation. Nature 390, 575 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    Furusawa, A., et al.: Unconditional quantum teleportation. Science 282, 706 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    Boschi, D., et al.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 80, 1121 (1998)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    Zhang, Z.J., Man, Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72, 022303 (2005)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Yan, F.L., Gao, T.: Quantum secret sharing between multiparty and multiparty without entanglement. Phys. Rev. A 72, 012304 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    Yu, C.S., Song, H.S., Wang, Y.H.: Remote preparation of a qudit using maximally entangled states of qubits. Phys. Rev. A 73, 022340 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    Zhu, A.D., Xia, Y., Fan, Q.B., Zhang, S.: Secure direct communication based on secret transmitting order of particles. Phys. Rev. A 73, 022338 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    Knill, E., Laflamme, R.: Power of one bit of quantum information. Phys. Rev. Lett. 81, 5672 (1998)ADSCrossRefGoogle Scholar
  22. 22.
    Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)ADSCrossRefGoogle Scholar
  23. 23.
    Luo, S.L.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    Luo, S.L.: Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77, 022301 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    Luo, S.L., Fu, S.S.: Geometric measure of quantum discord. Phys. Rev. A 82, 034302 (2010)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Modi, K., Paterek, T., Son, W., Vedral, V., Williamson, M.: Unified view of quantum and classical correlations. Phys. Rev. Lett. 104, 080501 (2010)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Dakic, B., Vedral, V., Brukner, C.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    Girolami, D., Paternostro, M., Adesso, G.: Faithful nonclassicality indicators and extremal quantum correlations in two-qubit states. J. Phys. A Math. Theor. 44, 352002 (2011)CrossRefGoogle Scholar
  29. 29.
    Zhou, T., Cui, J., Long, G.L.: Measure of nonclassical correlation in coherence-vector representation. Phys. Rev. A 84, 062105 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    Zhang, Z.J.: Revised definitions of quantum dissonance and quantum discord. arXiv:1011.4333 [quant-ph]
  31. 31.
    Rulli, C.C., Sarandy, M.S.: Global quantum discord in multipartite systems. Phys. Rev. A 84, 042109 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    Zhang, F.L., Chen, J.L.: Irreducible multiqutrit correlations in Greenberger–Horne–Zeilinger type states. Phys. Rev. A. 84, 062328 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    Wei, H.R., Ren, B.C., Deng, F.G.: Geometric measure of quantum discord for a two- parameter class of states in a qubit-qutrit system under various dissipative channels. Quantum Inf. Process. 12, 1109 (2013)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    Ali, M., Rau, A.R.P., Alber, G.: Quantum discord for two-qubit X states. Phys. Rev. A 81, 042105 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    Girolami, D., Tufarelli, T., Adesso, G.: Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 110, 240402 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    Yuan, J.B., Kuang, L.M., Liao, J.Q.: Amplification of quantum discord between two uncoupled qubits in a common environment by phase decoherence. J. Phys. B At. Mol. Opt. Phys. 43, 165503 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    Liu, Y., Lu, J., Zhou, L.: Quantum correlations of two qubits interacting with a macroscopic medium. Quantum Inf. Process. 14, 1343 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    Tang, S.Q., Yuan, J.B., Kuang, L.M., Wang, X.W.: Quantum-discord-triggered superradiance and subradiance in a system of two separated atoms. Quantum Inf. Process. 14, 2883 (2015)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Briegel, H.J., Dür, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932 (1998)ADSCrossRefGoogle Scholar
  40. 40.
    Briegel, H.J., Dür, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932 (1998)ADSCrossRefGoogle Scholar
  41. 41.
    Munro, W.J., Van, M.R., et al.: High-bandwidth hybrid quantum repeater. Phys. Rev. Lett. 101, 040502 (2008)ADSCrossRefGoogle Scholar
  42. 42.
    Yurke, B., Stoler, D.: Einstein–Podolsky–Rosen effects from independent particle sources. Phys. Rev. Lett. 68, 1251 (1992)ADSCrossRefGoogle Scholar
  43. 43.
    Bennett, C.H., Brassard, G., Crpeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    Zukowski, M., Zeilinger, A., et al.: “Event-ready-detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287 (1993)ADSCrossRefGoogle Scholar
  45. 45.
    Wang, T.J., Song, S.Y., Long, G.L.: Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities. Phys. Rev. A 85, 062311 (2012)ADSCrossRefGoogle Scholar
  46. 46.
    Khalique, A., Sanders, B.C.: Long-distance quantum communication through any number of entanglement-swapping operations. Phys. Rev. A 90, 032304 (2014)ADSCrossRefGoogle Scholar
  47. 47.
    Goebel, A.M., Wagenknecht, C., Zhang, Q., et al.: Multistage entanglement swapping. Phys. Rev. Lett. 101, 080403 (2008)ADSCrossRefGoogle Scholar
  48. 48.
    Branciard, C., Gisin, N., Pironio, S.: Characterizing the nonlocal correlations created via entanglement swapping. Phys. Rev. Lett. 104, 170401 (2010)ADSCrossRefGoogle Scholar
  49. 49.
    Modłwska, J., Grudka, A.: Increasing singlet fraction with entanglement swapping. Phys. Rev. A 78, 032321 (2008)ADSCrossRefGoogle Scholar
  50. 50.
    Roy, S.M., Deshpande, A., Sakharwade, N.: Remote tomography and entanglement swapping via von Neumann–Arthurs–Kelly interaction. Phys. Rev. A 89, 052107 (2014)ADSCrossRefGoogle Scholar
  51. 51.
    Xie, C.M., Liu, Y.M., Xing, H., Chen, J.L., Zhang, Z.J.: Quantum correlation swapping. Quantum Inf. Process. 14, 653–679 (2015)ADSMathSciNetCrossRefGoogle Scholar
  52. 52.
    Azam, M., Vahid, K., Laleh, M.: Comparison of parallel and antiparallel two-qubit mixed states. Phys. Rev. A 91, 012304 (2015)MathSciNetCrossRefGoogle Scholar
  53. 53.
    Modlawska, J., Grudka, A.: Increasing singlet fraction with entanglement swapping. Phys. Rev. A 78, 032321 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Chuanmei Xie
    • 1
  • Yimin Liu
    • 2
  • Jianlan Chen
    • 1
  • Zhanjun Zhang
    • 3
    Email author
  1. 1.School of Physics and Material ScienceAnhui UniversityHefeiChina
  2. 2.Department of PhysicsShaoguan UniversityShaoguanChina
  3. 3.School of Information and Electronic EngineeringZhejiang Gongshang UniversityHangzhouChina

Personalised recommendations