Polygamy relations of multipartite systems

  • Zhi-Xiang JinEmail author
  • Shao-Ming FeiEmail author
  • Cong-Feng QiaoEmail author


We investigate the polygamy relations of multipartite quantum states. General polygamy inequalities are given in the \(\alpha \)th \((\alpha \ge 2)\) power of concurrence of assistance, \(\beta \)th \((\beta \ge 1)\) power of entanglement of assistance, and the squared convex-roof extended negativity of assistance (SCRENoA).


Polygamy relation Multipartite systems Entanglement of assistance 



This work was supported in part by the National Natural Science Foundation of China(NSFC) under Grants 11847209; 11675113 and 11635009; Key Project of Beijing Municipal Commission of Education under No. KZ201810028042; the Ministry of Science and Technology of the Peoples’ Republic of China (2015CB856703); and the Strategic Priority Research Program of the Chinese Academy of Sciences, Grant No. XDB23030100.


  1. 1.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  2. 2.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Mintert, F., Kuś, M., Buchleitner, A.: Concurrence of mixed bipartite quantum states in arbitrary dimensions. Phys. Rev. Lett. 92, 167902 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    Chen, K., Albeverio, S., Fei, S.M.: Concurrence of arbitrary dimensional bipartite quantum states. Phys. Rev. Lett. 95, 040504 (2005)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Breuer, H.P.: Separability criteria and bounds for entanglement measures. J. Phys. A Math. Gen. 39, 11847 (2006)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Breuer, H.P.: Optimal entanglement criterion for mixed quantum states. Phys. Rev. Lett. 97, 080501 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    de Vicente, J.I.: Lower bounds on concurrence and separability conditions. Phys. Rev. A 75, 052320 (2007)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Zhang, C.J., Zhang, Y.S., Zhang, S., Guo, G.C.: Optimal entanglement witnesses based on local orthogonal observables. Phys. Rev. A 76, 012334 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    Pawlowski, M.: Security proof for cryptographic protocols based only on the monogamy of bells inequality violations. Phys. Rev. A 82, 032313 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    Gour, G., Meyer, D.A., Sanders, B.C.: Deterministic entanglement of assistance and monogamy constraints. Phys. Rev. A 72, 042329 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    Kim, J.S.: Tsallis entropy and entanglement constraints in multiqubit systems. Phys. Rev. A 81, 062328 (2010)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Kim, J.S., Sanders, B.C.: Unified entropy, entanglement measures and monogamy of multiparty entanglement. J. Phys. A Math. Theor. 44, 295303 (2011)CrossRefGoogle Scholar
  15. 15.
    Goura, G., Bandyopadhyayb, S., Sandersc, B.C.: Dual monogamy inequality for entanglement. J. Math. Phys. 48, 012108 (2007)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Buscemi, F., Gour, G., Kim, J.S.: Polygamy of distributed entanglement. Phys. Rev. A 80, 012324 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    Kim, J.S.: General polygamy inequality of multiparty quantum entanglement. Phys. Rev. A 85, 062302 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    Kim, J.S.: Tsallis entropy and general polygamy of multiparty quantum entanglement in arbitrary dimensions. Phys. Rev. A 94, 062338 (2016)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Jin, Z.X., Fei, S.M.: Tighter entanglement monogamy relations of qubit systems. Quantum Inf. Process. 16, 77 (2017)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Jin, Z.X., Li, J., Li, T., Fei, S.M.: Tighter monogamy relations in multiqubit systems. Phys. Rev. A 97, 032336 (2018)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Zhu, X.N., Fei, S.M.: Entanglement monogamy relations of qubit systems. Phys. Rev. A 90, 024304 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    Kalaga, J.K., Leoński, W.: Quantum steering borders in three-qubit systems. Quantum Inf. Process. 16, 175 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    Kalaga, J.K., Leoński, W.: Quantum steering and entanglement in three-mode triangle Bose–Hubbard system. Quantum Inf. Process. 16, 265 (2017)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Olsen, M.K.: Spreading of entanglement and steering along small Bose–Hubbard chains. Phys. Rev. A 92, 033627 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    Deng, X., Xiang, Y., Tian, C., Adesso, G., He, Q.: Demonstration of monogamy relations for Einstein–Podolsky–Rosen steering in Gaussian cluster states. Phys. Rev. Lett. 118, 230501 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    Kalaga, J.K., Leoński, W.: Einstein–Podolsky–Rosen steering and coherence in the family of entangled three-qubit states. Phys. Rev. A 97, 042110 (2018)ADSCrossRefGoogle Scholar
  27. 27.
    Kim, J.S.: Negativity and tight constraints of multiqubit entanglement. Phys. Rev. A 97, 012334 (2018)ADSCrossRefGoogle Scholar
  28. 28.
    Kim, J.S.: Weighted polygamy inequalities of multiparty entanglement in arbitrary-dimensional quantum systems. Phys. Rev. A 97, 042332 (2018)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Guo, Y.: Any entanglement of assistance is polygamous. Quantum Inf. Process. 17, 222 (2018)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Uhlmann, A.: Fidelity and concurrence of conjugated states. Phys. Rev. A 62, 032307 (2000)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Rungta, P., Buz̆ek, V., Caves, C.M., Hillery, M., Milburn, G.J.: Universal state inversion and concurrence in arbitrary dimensions. Phys. Rev. A 64, 042315 (2001)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Albeverio, S., Fei, S.M.: A note on invariants and entanglements. J. Opt. B Quantum Semiclass. Opt. 3, 223 (2001)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Laustsen, T., Verstraete, F., Van Enk, S.J.: Local vs. joint measurements for the entanglement of assistance. Quantum Inf. Comput. 3, 64 (2003)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Yu, C.S., Song, H.S.: Entanglement monogamy of tripartite quantum states. Phys. Rev. A 77, 032329 (2008)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Osborne, T.J., Verstraete, F.: General monogamy inequality for bipartite qubit entanglement. Phys. Rev. Lett. 96, 220503 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    Bai, Y.K., Ye, M.Y., Wang, Z.D.: Entanglement monogamy and entanglement evolution in multipartite systems. Phys. Rev. A 80, 044301 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    Akhtarshenas, S.J.: Concurrence vectors in arbitrary multipartite quantum systems. J. Phys. A 38, 6777 (2005)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    Kim, J.S.: Polygamy of entanglement in multipartite quantum systems. Phys. Rev. A 80, 022302 (2009)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Groblacher, S., Jennewein, T., Vaziri, A., Weihs, G., Zeilinger, A.: Experimental quantum cryptography with qutrits. New J. Phys. 8, 75 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A. 65, 032314 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of PhysicsUniversity of Chinese Academy of SciencesBeijingChina
  2. 2.School of Mathematical SciencesCapital Normal UniversityBeijingChina
  3. 3.Max-Planck-Institute for Mathematics in the SciencesLeipzigGermany
  4. 4.CAS Center for Excellence in Particle PhysicsBeijingChina

Personalised recommendations