Advertisement

Adversarial versus cooperative quantum estimation

  • Milajiguli RexitiEmail author
  • Stefano Mancini
Article
  • 45 Downloads

Abstract

We address the estimation of a one-parameter family of isometries taking one input into two output systems. This primarily allows us to consider imperfect estimation by accessing only one output system, i.e., through a quantum channel. Then, on the one hand, we consider separate and adversarial control of the two output systems to introduce the concept of privacy of estimation. On the other hand we conceive the possibility of separate but cooperative control of the two output systems. Optimal estimation strategies are found according to the minimum mean square error. This also implies the generalization of Personik’s theorem to the case of local measurements. Finally, applications to two-qubit unitaries (with one qubit in a fixed input state) are discussed.

Keywords

Quantum information Decoherence Quantum measurement theory 

Notes

Acknowledgements

The work of M.R. is supported by China Scholarship Council.

References

  1. 1.
    Paris, M.G.A.: Quantum estimation for quantum technology. Int. J. Quantum Inf. 7, 125 (2009)CrossRefGoogle Scholar
  2. 2.
    Ballester, M.A.: Estimation of SU(d) using entanglement. arXiv:quant-ph/0507073 (2005)
  3. 3.
    Hayashi, M.: Parallel treatment of estimation of SU(2) and phase estimation. Phys. Lett. A 354, 183 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    Kahn, J.: Fast rate estimation of a unitary operation in SU(d). Phys. Rev. A 75, 022326 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    Sasaki, M., Ban, M., Barnett, S.M.: Optimal parameter estimation of a depolarizing channel. Phys. Rev. A 66, 022308 (2002)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Fujiwara, A., Imai, H.: Quantum parameter estimation of a generalized Pauli channel. J. Phys. A Math. Gen. 36, 8093 (2003)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Ji, Z., Wang, G., Duan, R., Feng, Y., Ying, M.: Parameter estimation of quantum channels. arXiv:quant-ph/0610060 (2006)
  8. 8.
    Cai, N., Winter, A., Yeung, R.W.: Quantum privacy and quantum wiretap channels. Probl. Inf. Transm. 40, 318 (2004)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Boche, H., Notzel, J.: The classical-quantum multiple access channel with conferencing encoders and with common messages. Quantum Inf. Process. 13, 2595 (2014)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Karumanchi, S., Mancini, S., Winter, A., Yang, D.: Classical capacities of quantum channels with environment assistance. Probl. Inf. Transm. 52, 214 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Stinespring, W.F.: Positive functions on \(C^*\)-algebras. Proc. Am. Math. Soc. 6, 211 (1955)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Personick, S.D.: Application of quantum estimation theory to analog communication over quantum channels. IEEE Trans. Inf. Theory 17, 240 (1971)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)zbMATHGoogle Scholar
  14. 14.
    Kraus, B., Cirac, J.I.: Optimal creation of entanglement using a two-qubit gate. Phys. Rev. A 63, 062309 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    Gregoratti, M., Werner, R.F.: Quantum lost and found. J. Mod. Opt. 50, 915 (2003)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Memarzadeh, L., Cafaro, C., Mancini, S.: Quantum information reclaiming after amplitude damping. J. Phys. A Math. Theor. 44, 045304 (2011)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Cramer, H.: Mathematical Methods of Statistics. Princeton University Press, Princeton (1946)zbMATHGoogle Scholar
  18. 18.
    Metha, M.: Random Matrices. Elsevier, Amsterdam (2004)Google Scholar
  19. 19.
    Karumanchi, S., Mancini, S., Winter, A., Yang, D.: Quantum channel capacities with passive environment assistance. IEEE Trans. Inf. Theory 62, 1733 (2016)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Rexiti, M., Mancini, S.: Estimation of two-qubit interactions through channels with environment assistance. Int. J. Quantum Inf. 15, 1750053 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematics and PhysicsXinjiang Agricultural UniversityÜrümqiChina
  2. 2.School of Advanced StudiesUniversity of CamerinoCamerinoItaly
  3. 3.School of Science and TechnologyUniversity of CamerinoCamerinoItaly
  4. 4.INFN-Sezione di PerugiaPerugiaItaly

Personalised recommendations