Controlled teleportation of an arbitrary two-qubit entanglement in noises environment

  • Kui Hou
  • Da-qiang Bao
  • Cheng-jie ZhuEmail author
  • Ya-ping Yang


We present a scheme for implementing tripartite controlled teleportation of an arbitrary two-qubit entanglement state with the genuine pentaqubit entangled state and generate the quantum channel and then demonstrated the feasibility of probabilistic controlled teleportation in cavity QED. We also used fidelity and concurrence to quantify the efficiency of the protocol in noisy environment. Several noise scenarios are investigated in which the bit of the controller and the receiver are subjected to the same or different types of noise. The result has shown that in some specially noise scenario, lower fidelity means higher entanglement for output state and it also exhibits more noise which leads to more efficiency for entanglement.


Control teleportation Noises environment Fidelity Entanglement 



This work was supported by the National Key Basic Research Special Foundation (Grant No. 2016YFA0302800); the Shanghai Science and Technology Committee (Grants No. 18JC1410900); the National Nature Science Foundation (Grant Nos. 11774262); the Natural Science Foundation of Anhui Province (Grant No. 1608085QA23).


  1. 1.
    Bennett, C.H., et al.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Hou, P.Y., et al.: Quantum teleportation from light beams to vibrational states of a macroscopic diamond. Nat. Commun. 7, 11736 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    Krauter, H., et al.: Deterministic quantum teleportation between distant atomic objects. Nat. Phys. 9, 400 (2013)CrossRefGoogle Scholar
  4. 4.
    Bussières, F., et al.: Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory. Nat. Photonics 8, 775 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    Steffen, L., et al.: Deterministic quantum teleportation with feed-forward in a solid state system. Nature 500, 319 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    Chen, Y.A., et al.: Memory-built-in quantum teleportation with photonic and atomic qubits. Nat. Phys. 4, 103 (2008)CrossRefGoogle Scholar
  7. 7.
    Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394 (1998)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Deng, F.G., Li, C.Y., Li, Y.S., Zhou, H.Y., Wang, Y.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72, 022338 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    Bose, S., Vedral, V., Knight, P.L.: Multiparticle generalization of entanglement swapping. Phys. Rev. A 57, 822 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    Man, Z.X., Xia, Y.J., An, N.B.: Genuine multiqubit entanglement and controlled teleportation. Phys. Rev. A 75, 052306 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    Chen, X.B., Zhang, N., Lin, S., Wen, Q.Y., Zhu, F.C.: Quantum circuits for controlled teleportation of two-particle entanglement via a W state. Opt. Commun. 281, 2331 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    Li, X.H., Ghose, S.: Analysis of N-qubit perfect controlled teleportation schemes from the controller’s point of view. Phys. Rev. A 91, 012320 (2015)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Jeong, K., Kim, J., Lee, S.: Minimal control power of the controlled teleportation. Phys. Rev. A 93, 032328 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    Medina, I., Semião, F.: Transmission losses in optical qubits for controlled teleportation. Quantum Inf. Process. 16, 235 (2017)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Ramírez, M.D.G., Falaye, B.J., Sun, G.H., Cruz-Irisson, M., Dong, S.H.: Quantum teleportation and information splitting via four-qubit cluster state and a Bell state. Front. Phys. 12, 120306 (2017)CrossRefGoogle Scholar
  16. 16.
    Oh, S., Lee, S., Lee, H.W.: Fidelity of quantum teleportation through noisy channels. Phys. Rev. A 66, 022316 (2002)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Carlo, G.G., Benenti, G., Casati, G.: Teleportation in a noisy environment: a quantum trajectories approach. Phys. Rev. Lett. 91, 257903 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    Jung, E., et al.: Greenberger–Horne–Zeilinger versus W states: quantum teleportation through noisy channels. Phys. Rev. A 78, 012312 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    Knoll, L.T., Schmiegelow, C.T., Larotonda, M.A.: Noisy quantum teleportation: an experimental study on the influence of local environments. Phys. Rev. A 90, 042332 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    Li, Y.H., Jin, X.M.: Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments. Quantum Inf. Process. 15, 929 (2016)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Fortes, R., Rigolin, G.: Probabilistic quantum teleportation in the presence of noise. Phys. Rev. A 93, 062330 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    Liang, H.Q., Liu, J.M., Feng, S.S., Chen, J.G.: Remote state preparation via a GHZ-class state in noisy environments. J. Phys. B At. Mol. Opt. Phys. 44, 115506 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    Adepoju, A.G., et al.: Joint remote state preparation (JRSP) of two-qubit equatorial state in quantum noisy channels. Phys. Lett. A 381, 581 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    Wang, M.M., Qu, Z.G.: Effect of quantum noise on deterministic joint remote state preparation of a qubit state via a GHZ channel. Quantum Inf. Process. 15, 4805 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    Fortes, R., Rigolin, G.: Fighting noise with noise in realistic quantum teleportation. Phys. Rev. A 92, 012338 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    Brown, I.D., Stepney, S., Sudbery, A., Braunstein, S.L.: Searching for highly entangled multi-qubit states. J. Phys. A 38, 1119 (2005)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Muralidharan, S., Panigrahi, P.K.: Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77, 032321 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    Xiu, X.M., Dong, L., Gao, Y.J., Chi, F.: Controlled deterministic secure quantum communication using five-qubit entangled states and two-step security test. Opt. Commun. 282, 333 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    Wang, X.W., Peng, Z.H., Jia, C.X., Wang, Y.H., Liu, X.J.: Scheme for implementing controlled teleportation and dense coding with genuine pentaqubit entangled state in cavity QED. Opt. Commun. 282, 670–673 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    Hou, K., Li, Y.B., Shi, S.H.: Quantum state sharing with a genuinely entangled five-qubit state and Bell-state measurements. Opt. Commun. 283, 1961 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    Ma, S.Y., Gao, C., Zhang, P., Qu, Z.G.: Deterministic remote preparation via the Brown state. Quantum Inf. Process. 16, 93 (2017)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Joy, D., Surendran, S.P., Sabir, M.: Efficient deterministic secure quantum communication protocols using multipartite entangled states. Quantum Inf. Process. 16, 157 (2017)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Zheng, S.B.: Generation of entangled states for many multilevel atoms in a thermal cavity and ions in thermal motion. Phys. Rev. A 68, 035801 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    Zheng, S.B.: Quantum-information processing and multiatom-entanglement engineering with a thermal cavity. Phys. Rev. A 66, 060303 (2002)ADSCrossRefGoogle Scholar
  35. 35.
    Xue, Z.Y., Yang, M., Yi, Y.M., Cao, Z.L.: Teleportation for atomic entangled state by entanglement swapping with separate measurements in cavity QED. Opt. Commun. 258, 315 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    Osnaghi, S., Bertet, P., Auffeves, A., et al.: Coherent control of an atomic collision in a cavity. Phys. Rev. Lett. 87, 037902 (2001)ADSCrossRefGoogle Scholar
  37. 37.
    Gardiner, C., Zoller, P., Zoller, P.: Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics. Springer, Berlin (2004)zbMATHGoogle Scholar
  38. 38.
    Blais, A., Huang, R.S., Wallraff, A., et al.: Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320 (2004)ADSCrossRefGoogle Scholar
  39. 39.
    Li, W.L., Li, C.F., Guo, G.C.: Probabilistic teleportation and entanglement matching. Phys. Rev. A 61, 034301 (2000)ADSCrossRefGoogle Scholar
  40. 40.
    Nielsen, M.A., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  41. 41.
    Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Kui Hou
    • 1
    • 2
  • Da-qiang Bao
    • 1
  • Cheng-jie Zhu
    • 1
    Email author
  • Ya-ping Yang
    • 1
  1. 1.MOE Key Laboratory of Advanced Micro-Structured Materials, School of Physics Science and EngineeringTongji UniversityShanghaiChina
  2. 2.Department of Mathematics and PhysicsAnhui JianZhu UniversityHefeiChina

Personalised recommendations