Quantum correlations in quantum emitters strongly coupled with metallic nanoparticles

  • Nikos Iliopoulos
  • Ioannis Thanopulos
  • Vassilios Yannopapas
  • Emmanuel PaspalakisEmail author


We study the dynamics of two initially entangled qubits prepared in an extended Werner-like state, where each one interacts locally with a spherical metallic nanoparticle. We combine quantum dynamics beyond the rotating-wave approximation with classical electromagnetic calculations in order to compute the time evolution of quantum discord and entanglement using entanglement of formation. We present results for qubits either quantum dots or J-aggregates and compare the evolution of quantum discord and entanglement of formation. We find interesting phenomena such as entanglement sudden death, periodic entanglement revival, entanglement oscillations and entanglement trapping by varying the initial state or the distance of each qubit to the corresponding nanoparticle.


Quantum correlations Quantum discord Entanglement of formation Quantum emitter Metallic nanoparticle Strong light-matter coupling 



Nikos Iliopoulos acknowledges the support of his Ph.D. by the General Secretariat for Research and Technology (GSRT) and the Hellenic Foundation for Research and Innovation (HFRI) via a doctoral scholarship (Grant No. 2649). We acknowledge useful discussions with Prof. Andreas F. Terzis and his help in the calculation of quantum correlations.


  1. 1.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  3. 3.
    Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)zbMATHGoogle Scholar
  5. 5.
    Yu, T., Eberly, J.H.: Sudden death of entanglement. Science 323, 598 (2009)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Lo Franco, R., Bellomo, B., Maniscalco, S., Compagno, G.: Dynamics of quantum correlations in two-qubit systems within non-Markovian environments. Int. J. Mod. Phys. B 27, 1345053 (2013)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Bellomo, B., Lo Franco, R., Maniscalco, S., Compagno, G.: Two-qubit entanglement dynamics for two different non-Markovian environments. Phys. Scr. A 140, 014014 (2008)ADSGoogle Scholar
  8. 8.
    Al-Amri, M., Li, G.-X., Tan, R., Zubairy, M.S.: Sudden death and birth of entanglement in photonic crystals. Phys. Rev. A 80, 022314 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    Bellomo, B., Lo Franco, R., Compagno, G.: Non-Markovian effects on the dynamics of entanglement. Phys. Rev. Lett. 99, 160502 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    Bellomo, B., Lo Franco, R., Maniscalco, S., Compagno, G.: Entanglement trapping in structured environments. Phys. Rev. A 78, 060302 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899 (2001)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Wang, B., Xu, Zhen-Yu., Chen, Ze-Qian, Feng, M.: Non-Markovian effect on the quantum discord. Phys. Rev. A 81, 014101 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    Fanchini, F.F., Werlang, T., Brasil, C.A., Arruda, L.G.E., Caldeira, A.O.: Non-Markovian dynamics of quantum discord. Phys. Rev. A 81, 052107 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Zhang, P., You, B., Cen, L.-X.: Long-lived quantum coherence of two-level spontaneous emission models within structured environments. Opt. Lett. 38, 3650 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Wang, J., Zhang, H., Zhang, Y., Zhang, L., Huang, T., Sun, S., Zhang, H.-Z.: Dynamics of quantum discord in photonic crystals. Opt. Commun. 285, 2961 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    Iliopoulos, N., Terzis, A.F., Yannopapas, V., Paspalakis, E.: Two-qubit correlations via a periodic plasmonic nanostructure. Ann. Phys. 365, 38 (2016)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Tame, M.S., McEnery, K.R., Ozdemir, S.K., Lee, J., Maier, S.A., Kim, M.S.: Quantum plasmonics. Nat. Phys. 9, 329 (2013)CrossRefGoogle Scholar
  19. 19.
    Marquier, F., Sauvan, C., Greffet, J.-J.: Revisiting quantum optics with surface plasmons and plasmonic resonators. ACS Photon. 4, 2091 (2017)CrossRefGoogle Scholar
  20. 20.
    Baranov, D.G., Wersäll, M., Cuadra, J., Antosiewicz, T.J., Shegai, T.: Novel nanostructures and materials for strong lightmatter interactions. ACS Photon. 5, 24 (2018)CrossRefGoogle Scholar
  21. 21.
    Gonzalez-Tudela, A., Rodriguez, F.J., Quiroga, L., Tejedor, C.: Dissipative dynamics of a solid-state qubit coupled to surface plasmons: from non-Markov to Markov regimes. Phys. Rev. B 82, 115334 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    Gonzalez-Tudela, A., Huidobro, P.A., Martin-Moreno, L., Tejedor, C., Garcia-Vidal, F.J.: Reversible dynamics of single quantum emitters near metal-dielectric interfaces. Phys. Rev. B 89, 041402(R) (2014)ADSCrossRefGoogle Scholar
  23. 23.
    Hakami, J., Wang, L., Zubairy, M.S.: Spectral properties of a strongly coupled quantum-dotmetal-nanoparticle system. Phys. Rev. A 89, 053835 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    Ge, R.-C., Hughes, S.: Quantum dynamics of two quantum dots coupled through localized plasmons: an intuitive and accurate quantum optics approach using quasinormal modes. Phys. Rev. B 92, 205420 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    Hakami, J., Zubairy, M.S.: Nanoshell-mediated robust entanglement between coupled quantum dots. Phys. Rev. A 93, 022320 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    Varguet, H., Rousseaux, B., Dzsotjan, D., Jauslin, H.R., Guérin, S., Colas des Francs, G.: Dressed states of a quantum emitter strongly coupled to a metal nanoparticle. Opt. Lett 41, 4480 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    Li, R.-Q., Hernangomez-Perez, D., Garcia-Vidal, F.J., Fernandez-Dominguez, A.I.: Transformation optics approach to plasmon–exciton strong coupling in nanocavities. Phys. Rev. Lett. 117, 107401 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    Thanopulos, I., Yannopapas, V., Paspalakis, E.: Non-Markovian dynamics in plasmon-induced spontaneous emission interference. Phys. Rev. B 95, 075412 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    Liberal, I., Engheta, N.: Zero-index structures as an alternative platform for quantum optics. PNAS 114, 822 (2017)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Yang, C.-J., An, J.-H.: Suppressed dissipation of a quantum emitter coupled to surface plasmon polaritons. Phys. Rev. B 95, 161408(R) (2017)ADSCrossRefGoogle Scholar
  31. 31.
    Li, R.-Q., Garcia-Vidal, F.J., Fernandez-Dominguez, A.I.: Plasmon-Exciton Coupling in Symmetry-Broken Nanocavities. ACS Photon. 5, 177 (2018)CrossRefGoogle Scholar
  32. 32.
    Hensen, M., Heilpern, T., Gray, S.K., Pfeiffer, W.: Strong coupling and entanglement of quantum emitters embedded in a nanoantenna-enhanced plasmonic cavity. ACS Photon. 5, 240 (2018)CrossRefGoogle Scholar
  33. 33.
    Iliopoulos, N., Thanopulos, I., Yannopapas, V., Paspalakis, E.: Counter-rotating effects and entanglement dynamics in strongly coupled quantum–emitter–metallic-nanoparticle structures. Phys. Rev. B 97, 115402 (2018)ADSCrossRefGoogle Scholar
  34. 34.
    Neuman, T., Esteban, R., Casanova, D., Garcia-Vidal, F.J., Aizpurua, J.: Coupling of molecular emitters and plasmonic cavities beyond the point-dipole approximation. Nano Lett. 18, 2358 (2018)ADSCrossRefGoogle Scholar
  35. 35.
    Cuartero-González, A., Fernandez-Dominguez, A.I.: Light-forbidden transitions in plasmon–emitter interactions beyond the weak coupling regime. ACS Photon. 5, 3415 (2018)CrossRefGoogle Scholar
  36. 36.
    Lu, Y.-W., Li, L.-Y., Liu, J.-F.: Influence of surface roughness on strong light–matter interaction of a quantum emitter–metallic nanoparticle system. Sci. Rep. 8, 7115 (2018)ADSCrossRefGoogle Scholar
  37. 37.
    Chikkaraddy, R., Nijs, B., Benz, F., Barrow, S.J., Scherman, O.A., Rosta, E., Demetriadou, A., Fox, P., Hess, O., Baumberg, J.J.: Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535, 127 (2016)ADSCrossRefGoogle Scholar
  38. 38.
    Santhosh, K., Bitton, O., Chuntonov, L., Haran, G.: Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit. Nat. Commun. 7, 11823 (2016)ADSCrossRefGoogle Scholar
  39. 39.
    Liu, R., Zhou, Z.-K., Yu, Y.-C., Zhang, T., Wang, H., Liu, G., Wei, Y., Chen, H., Wang, X.-H.: Strong light–matter interactions in single open plasmonic nanocavities at the quantum optics limit. Phys. Rev. Lett. 118, 237401 (2017)ADSCrossRefGoogle Scholar
  40. 40.
    Yang, S., Al-Amri, M., Zhu, S.-Y., Zubairy, M.S.: Effect of counter-rotating terms on the spontaneous emission in an anisotropic photonic crystal. Phys. Rev. A 87, 033818 (2013)ADSCrossRefGoogle Scholar
  41. 41.
    Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)ADSCrossRefGoogle Scholar
  42. 42.
    Ali, M., Rau, A.R.P., Alber, G.: Quantum discord for two-qubit X states. Phys. Rev. A 81, 042105 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    Luo, S.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)ADSCrossRefGoogle Scholar
  44. 44.
    Bellomo, B., Lo Franco, R., Compagno, S.G.: Entanglement dynamics of two independent qubits in environments with and without memory. Phys. Rev. A 77, 032342 (2008)ADSCrossRefGoogle Scholar
  45. 45.
    Dung, H.T., Knöll, L., Welsch, D.-G.: Spontaneous decay in the presence of dispersing and absorbing bodies: general theory and application to a spherical cavity. Phys. Rev. A 62, 053804 (2000)ADSCrossRefGoogle Scholar
  46. 46.
    Almpanis, E., Papanikolaou, N.: Designing photonic structures of nanosphere arrays on reflectors for total absorption. J. Appl. Phys. 114, 083106 (2013)ADSCrossRefGoogle Scholar
  47. 47.
    Yannopapas, V., Vitanov, N.V.: Electromagnetic greens tensor and local density of states calculations for collections of spherical scatterers. Phys. Rev. B 75, 115124 (2007)ADSCrossRefGoogle Scholar
  48. 48.
    Akimov, A.V., Mukherjee, A., Yu, C.L., Chang, D.E., Zibrov, A.S., Hemmer, P.R., Park, H., Lukin, M.D.: Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature (London) 450, 402 (2007)ADSCrossRefGoogle Scholar
  49. 49.
    Fidder, H., Knoester, J., Wiersma, D.A.: Superradiant emission and optical dephasing in J-aggregates. Chem. Phys. Lett. 171, 529 (1990)ADSCrossRefGoogle Scholar
  50. 50.
    Yönac, M., Yu, T., Eberly, J.H.: Sudden death of entanglement of two Jaynes–Cummings atoms. J. Phys. B 39, 15 (2006)CrossRefGoogle Scholar
  51. 51.
    Chen, Q.-H., Yang, Y., Liu, T., Wang, K.-L.: Entanglement dynamics of two independent Jaynes–Cummings atoms without the rotating-wave approximation. Phys. Rev. A 82, 052306 (2010)ADSCrossRefGoogle Scholar
  52. 52.
    Zhang, Y.-J., Han, W., Shan, C.-J., Xia, Y.-J.: Decay of quantum correlation under different non-Markovian environmental models. J. Opt. Soc. Am. B 29, 2060 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Nikos Iliopoulos
    • 1
  • Ioannis Thanopulos
    • 2
  • Vassilios Yannopapas
    • 3
  • Emmanuel Paspalakis
    • 1
    Email author
  1. 1.Materials Science Department, School of Natural SciencesUniversity of PatrasPatrasGreece
  2. 2.Department of Optics and OptometryT.E.I. of Western GreeceAigioGreece
  3. 3.Department of PhysicsNational Technical University of AthensAthensGreece

Personalised recommendations