Cryptanalysis and improvement in controlled quantum dialogue using cluster states

  • Zhihao LiuEmail author
  • Hanwu ChenEmail author


The controlled quantum dialogue protocol which was put forward recently (Kao and Hwang in Quantum Inf Process 16(5):139, 2017) is analyzed. It shows that a dishonest controller can successfully eavesdrop on the secret messages that the two users send by the different initial state attack or he (she) can disturb communication without being detected by the denial-of-service attack. To improve these security loopholes, a new method to check eavesdropping is given. The correctness and efficiency of this method is proven.


Controlled quantum dialogue Cluster state Different initial state attack Denial-of-service attack 



This work was supported by National Natural Science Foundation of China (Grant Nos. 61502101 and 61871120), and Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20140651 and BK20171458) and the Six Talent Peaks Project of Jiangsu Province (Grant No. XYDXX-003).


  1. 1.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, pp. 175–179 (1984)Google Scholar
  2. 2.
    Gisin, N., Ribordy, G.G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–195 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    Lo, H.-K., Curty, M., Tamaki, K.: Secure quantum key distribution. Nat. Photon. 8(8), 595–604 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    Long, G.L., Deng, F.G., Wang, C., Li, X.H.: Quantum secure direct communication and deterministic secure quantum communication. Front. Phys. China 2(3), 251–272 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    Liu, Z.H., Han, W.C., Liu, W.J., Xu, J., Wang, D., Li, Z.Q.: Quantum secure direct communication with optimal quantum superdense coding by using general four-qubit states. Quantum Inf. Process. 12(1), 587–599 (2013)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Li, X.H.: Quantum secure direct communication. Acta Phys. Sin. 64(16), 0160307 (2015)Google Scholar
  8. 8.
    Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Revisiting the security of quantum dialogue and bidirectional quantum secure direct communication. Sci. China Ser. G-Phys. Mech. Astron. 51(5), 559–566 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    Chang, C.-H., Yang, C.-W., Hzu, G.-R., Hwang, T., Kao, S.-H.: Quantum dialogue protocols over collective noise using entanglement of GHZ state. Quantum Inf. Process. 15(7), 2971–2991 (2016)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Xiao, M., Cao, Y.-R., Song, X.-L.: Efficient and secure authenticated quantum dialogue protocols over collective-noise channels. Chin. Phys. Lett. 34(03), 30302 (2017)CrossRefGoogle Scholar
  11. 11.
    Liu, Z.H., Chen, H.W.: Comment on “improvement of controlled bidirectional quantum direct communication using a GHZ state” [Chin. Phys. Lett. 30 (2013) 040305]. Chin. Phys. Lett. 30(7), 079901 (2013)Google Scholar
  12. 12.
    Man, Z.X., Xia, Y.J.: Controlled bidirectional quantum direct communication by using a GHZ state. Chin. Phys. Lett. 23(7), 1680–1682 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    Xia, Y.J., Man, Z.X.: Controlled quantum n-party simultaneous direct communication. Commun. Theor. Phys. 48(1), 79–82 (2007)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Xia, Y., Song, J., Nie, J., Song, H.S.: Controlled secure quantum dialogue using a pure entangled GHZ states. Commun. Theor. Phys. 48(5), 841–846 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    Dong, L., Xiu, X.M., Gao, Y.J., Chi, F.: A controlled quantum dialogue protocol in the network using entanglement swapping. Opt. Commun. 281(24), 6135–6138 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    Ye, T.Y., Jiang, L.Z.: Improvement of controlled bidirectional quantum direct communication using a GHZ state. Chin. Phys. Lett. 30(4), 040305 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    Kao, S.H., Hwang, T.: Controlled quantum dialogue robust against conspiring users. Quantum Inf. Process. 15(10), 4313–4324 (2016)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Zarmehi, F., Houshmand, M.: Controlled bidirectional quantum secure direct communication network using classical xor operation and quantum entanglement. IEEE Commun. Lett. 20(10), 2071–2074 (2016)CrossRefGoogle Scholar
  19. 19.
    Kao, S.-H., Hwang, T.: Controlled quantum dialogue using cluster states. Quantum Inf. Process. 16(5), 139 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    Yen, C.A., Horng, S.J., Goan, H.S., Kao, T.W., Chou, Y.H.: Quantum direct communication with mutual authentication. Quantum Inf. Comput. 9(5–6), 376–394 (2009)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Liu, Z., Chen, H.: Cryptanalysis of controlled bidirectional quantum secure direct communication network using classical xor operation and quantum entanglement. IEEE Commun. Lett. 21(10), 2202–2205 (2017)CrossRefGoogle Scholar
  22. 22.
    Cai, Q.Y.: The “ping–pong” protocol can be attacked without eavesdropping. Phys. Rev. Lett. 91(10), 109801 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    Liu, Z.-H., Chen, H.-W., Wang, D., Li, W.-Q.: Cryptanalysis and improvement of three-particle deterministic secure and high bit-rate direct quantum communication protocol. Quantum Inf. Process. 13(6), 1345–1351 (2014)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Computer Science and EngineeringSoutheast UniversityNanjingChina
  2. 2.Key Laboratory of Computer Network and Information Integration (Southeast University)Ministry of EducationNanjingChina
  3. 3.Centre for Quantum Software and Information, Faculty of Engineering and Information TechnologyUniversity of Technology SydneySydneyAustralia

Personalised recommendations