Effect of partial-collapse measurement on quantum Stackelberg duopoly game in noninertial frame
Abstract
An efficient method is proposed to improve the payoffs of the firms in quantum Stackelberg duopoly game under noninertial frame using partial-collapse measurement. It is shown that the payoffs of firms can be enhanced to a great extent. We obtain the maximally retrievable payoffs of firms for maximally entangled initial state and unentangled initial state respectively. In particular, the payoffs of firms approach to certain constants and Nash equilibrium exists for the whole range values of the acceleration parameter by changing partial-collapse measurement strength. Our work provides a novel method to recover payoffs in quantum game under Unruh decoherence and exhibits the ability of partial-collapse measurement as an important technique in relativistic quantum game.
Keywords
Stackelberg duopoly game Noninertial frame The payoff Partial-collapse measurementNotes
Acknowledgements
This work was supported by the National Natural Science Foundation of China (Grant Nos. 11374096 and 11604094), the Natural Science Foundation of Hunan Province of China (Grant No. 2016JJ2044) and the Major Program for the Research Foundation of Education Bureau of Hunan Province of China (Grant No. 16A057).
References
- 1.Straffin, P.D.: Game Theory and Strategy. The Mathematical Association of America, Washington (1993)zbMATHGoogle Scholar
- 2.Binmore, K.: Playing for Real: A Text on Game Theory. Oxford University Press, New York (2007)CrossRefGoogle Scholar
- 3.Samuelson, P.A., Nordhaus, W.D.: Economics. McGraw-Hill, New York (1993)Google Scholar
- 4.Li, H., Du, J., Massar, S.: Continuous-variable quantum games. Phys. Lett. A 306, 73 (2002)ADSMathSciNetCrossRefGoogle Scholar
- 5.Du, J., Li, H., Ju, C.: Quantum games of asymmetric information. Phys. Rev. E 68, 016124 (2003)ADSCrossRefGoogle Scholar
- 6.Lo, C.F., Kiang, D.: Quantum Bertrand duopoly with differentiated products. Phys. Lett. A 321, 94 (2004)ADSMathSciNetCrossRefGoogle Scholar
- 7.Bierman, H.S., Fernandez, L.: Game Theory with Economic Applications, 2nd edn. Addison Wesley, Reading (1998)Google Scholar
- 8.Lo, C.F., Kiang, D.: Quantum Stackelberg duopoly. Phys. Lett. A 318, 333 (2003)ADSMathSciNetCrossRefGoogle Scholar
- 9.Bierman, H.S., Fernandez, L.: Game Theory with Economic Applications. Addison Wesley, Reading (1998)Google Scholar
- 10.Gravelle, H., Rees, R.: Microeconomics. Longman Harlow, New York (1992)Google Scholar
- 11.Rasmusen, E.: Games and Information: An Introduction to Game Theory. Peking University, Beijing (2003). (in Chinese)zbMATHGoogle Scholar
- 12.Zhang, W.Y.: Game Theory and Information Economics. Shanghai People’s Press, Shanghai (2004). (in Chinese)Google Scholar
- 13.Alsing, P.M., Fuentes, I.: Focus issue on relativistic quantum information. Class. Quantum Grav. 29, 224001 (2012)ADSCrossRefGoogle Scholar
- 14.Situ, H.Z., Huang, Z.M.: Relativistic quantum Bayesian game under decoherence. Int. J. Theor. Phys. 55, 2354 (2016)MathSciNetCrossRefGoogle Scholar
- 15.Khan, S., Khan, M.K.: Noisy relativistic quantum games in noninertial frames. Quantum Inf. Process. 12, 1351 (2013)ADSCrossRefGoogle Scholar
- 16.Goudarzi, H., Beyrami, S.: Effect of uniform acceleration on multiplayer quantum game. J. Phys. A Math. Theor. 45, 225301 (2012)ADSCrossRefGoogle Scholar
- 17.Khan, S., Khan, M.K.: Relativistic quantum games in noninertial frames. J. Phys. A Math. Theor. 44, 355302 (2011)ADSCrossRefGoogle Scholar
- 18.Khan, S., Khan, M.K.: Quantum Stackelberg duopoly in a noninertial frame. Chin. Phys. Lett. 28, 070202 (2011)CrossRefGoogle Scholar
- 19.Katz, N., et al.: Coherent state evolution in a superconducting qubit from partial-collapse measurement. Science 312, 1498 (2006)ADSCrossRefGoogle Scholar
- 20.Blok, M.S., Bonato, C., Markham, M.L., Twitchen, D.J., Dobrovitski, V.V., Hanson, R.: Manipulating a qubit through the backaction of sequential partial measurements and real-time feedback. Nat. Phys. 10, 189 (2014)CrossRefGoogle Scholar
- 21.Sun, Q.Q., Al-Amri, M., Zubairy, M.S.: Reversing the weak measurement of an arbitrary field with finite photon number. Phys. Rev. A 80, 033838 (2009)ADSCrossRefGoogle Scholar
- 22.Man, Z.X., Xia, Y.J., An, N.B.: Manipulating entanglement of two qubits in a common environment by means of weak measurements and quantum measurement reversals. Phys. Rev. A 86, 012325 (2012)ADSCrossRefGoogle Scholar
- 23.Liao, X.P., Ding, X.Z., Fang, M.F.: Improving the payoffs of cooperators in three-player cooperative game using weak measurements. Quantum Inf. Process. 14, 4395 (2015)ADSMathSciNetCrossRefGoogle Scholar
- 24.Xiao, X., Xie, Y.M., Yao, Y., Li, Y.L., Wang, J.C.: Retrieving the lost fermionic entanglement by partial measurement in noninertial frames. Ann. Phys. 390, 83 (2018)ADSMathSciNetCrossRefGoogle Scholar
- 25.Kim, Y.S., Cho, Y.W., Ra, Y.S., Kim, Y.H.: Reversing the weak quantum measurement for a photonic qubit. Opt. Express 17, 11978 (2009)ADSCrossRefGoogle Scholar
- 26.Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117 (2012)CrossRefGoogle Scholar
- 27.Xiao, X., Yao, X., Zhong, W.J., Li, Y.L., Xie, Y.M.: Enhancing teleportation of quantum Fisher information by partial measurements. Phys. Rev. A 93, 012307 (2016)ADSCrossRefGoogle Scholar
- 28.Gibbons, R.: Game Theory for Applied Economists. Princeton University Press, Princeton (1992)Google Scholar
- 29.Khan, S., Ramzan, M., Khan, M.K.: Quantum model of Bertrand duopoly. Chinese Phys. Lett. 27, 080302 (2010)ADSCrossRefGoogle Scholar
- 30.Lo, C.F., Kiang, D.: Quantum Stackelberg duopoly with incomplete information. Phys. Lett. A 346, 65 (2005)ADSMathSciNetCrossRefGoogle Scholar
- 31.Wang, X., Hu, C.Z.: Quantum Stackelberg duopoly with continuous distributed incomplete information. Chin. Phys. Lett. 29, 120303 (2012)ADSCrossRefGoogle Scholar
- 32.Marinatto, L., Weber, T.: A quantum approach to static games of complete information. Phys. Lett. A 272, 291 (2000)ADSMathSciNetCrossRefGoogle Scholar
- 33.Iqbal, A., Toor, A.H.: Backwards-induction outcome in a quantum game. Phys. Rev. A 65, 052328 (2002)ADSCrossRefGoogle Scholar
- 34.Zhu, X., Kuang, L.M.: The influence of entanglement and decoherence on the quantum Stackelberg duopoly game. J. Phys. A Math. Theor. 40, 7729 (2007)ADSMathSciNetCrossRefGoogle Scholar
- 35.Zhu, X., Kuang, L.M.: Quantum Stackelberg duopoly game in depolarizing channel. Commun. Theor. Phys. 49, 111 (2008)ADSMathSciNetCrossRefGoogle Scholar
- 36.Khan, S., Ramzan, M., Khan, M.K.: Quantum Stackelberg duopoly in the presence of correlated noise. J. Phys. A Math. Theor. 43, 375301 (2010)MathSciNetCrossRefGoogle Scholar
- 37.Alsing, P.M., Fuentes-Schuller, I., Mann, R.B., Tessier, T.E.: Entanglement of Dirac fields in noninertial frames. Phys. Rev. A 74, 032326 (2006)ADSCrossRefGoogle Scholar
- 38.Crispino, L.C.B., Higuchi, A., Matsas, G.E.A.: The Unruh effect and its applications. Rev. Mod. Phys. 80, 787 (2008)ADSMathSciNetCrossRefGoogle Scholar
- 39.Wang, S.C., Yu, Z.W., Zou, W.J., Wang, X.B.: Protecting quantum states from decoherence of finite temperature using weak measurement. Phys. Rev. A 89, 022318 (2014)ADSCrossRefGoogle Scholar
- 40.Liao, X.P., Fang, M.F., Fang, J.S., Zhu, Q.Q.: Preserving entanglement and the fidelity of three-qubit quantum states undergoing decoherence using weak measurement. Chin. Phys. B 23, 020304 (2014)ADSCrossRefGoogle Scholar