A quantum eigensolver for symmetric tridiagonal matrices

  • Hefeng WangEmail author
  • Hua Xiang


The eigenproblem of a symmetric tridiagonal matrix widely appears in physical applications and scientific computing. The classical solvers are the symmetric QR iteration, divide-and-conquer, bisection and inverse iteration, etc. For a symmetric tridiagonal matrix of dimension N, the cost of these methods scales at least as \(O(N^2)\). In this work, we present an efficient quantum algorithm for solving this problem through quantum simulation of resonant transitions. The cost of the algorithm can scale as \(poly(\log \,N)\), provided a good initial guess on the eigenstates of the system is obtained. By coupling a probe qubit to a quantum register that represents a system, resonance dynamics can be observed on the probe qubit when its frequency matches a transition frequency in the system. Energy eigenvalues of the system can be obtained by locating resonant transition frequencies between the probe qubit and transitions from a reference state to eigenstates of the system through observing dynamics of the probe qubit for different frequencies. And the system can be evolved to one of its eigenstate with known eigenvalue by inducing an appropriate resonant transition between the probe qubit and the system.


Quantum computation Quantum simulation Quantum algorithm Eigenproblem Tridiagonal matrices 



  1. 1.
    Demmel, J.W.: Applied Numerical Linear Algebra. SIAM, Philadephia (1997)CrossRefGoogle Scholar
  2. 2.
    Parlett, B.N.: The Symmetric Eigenvalue Problem. SIAM, Philadelphia (1998)CrossRefGoogle Scholar
  3. 3.
    Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. The John Hopkins University Press, Baltimore (2013)zbMATHGoogle Scholar
  4. 4.
    Cullum, J.K., Willoughby, R.A.: Lanczos Algorithms for Large Symmetric Eigenvalue Computations, Vol. I Theory, Birkhauser, Boston (1985), (reprinted by SIAM, 2002)Google Scholar
  5. 5.
    Trefethen, L.N., Bau, B.I.I.I.: Numerical Linear Algebra. SIAM, Philadephia (1997)CrossRefGoogle Scholar
  6. 6.
    Cuppen, J.J.M.: A divide and conquer method for the symmetric tridiagonal eigenproblem. Numer. Math. 36, 177–195 (1981)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dongarra, J.J., Sorensen, D.C.: A fully parallel algorithm for the symmetric eigenvalue problem. SIAM J. Sci. Stat. Comput. 8, s139–s154 (1987)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gu, M., Eisenstat, S.C.: A divide-and-conquer algorithm for the symmetric tridiagonal eigenproblem. SIAM J. Matrix Anal. Appl. 16, 172–191 (1995)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Kitaev, A.: Quantum measurements and the Abelian Stabilizer Problem (1995). (arXiv:quant-ph/9511026)
  10. 10.
    Abrams, D.S., Lloyd, S.: Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors. Phys. Rev. Lett. 83, 5162–5165 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    Aspuru-Guzik, A., Dutoi, A.D., Love, P.J., Head-Gordon, M.: Simulated quantum computation of molecular energies. Science 309, 1704 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    Wang, H., Kais, S., Aspuru-Guzik, A., Hoffmann, M.R.: Quantum algorithm for obtaining the energy spectrum of molecular systems. Phys. Chem. Chem. Phys. 10, 5388–5393 (2008)CrossRefGoogle Scholar
  13. 13.
    Wang, H.: Quantum algorithm for obtaining the eigenstates of a physical system. Phys. Rev. A 93, 052334 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    Berry, D.W., Ahokas, G., Cleve, R., Sanders, B.C.: Efficient quantum algorithms for simulating sparse Hamiltonians. Commun. Math. Phys. 270, 359 (2007)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Berry, D.W., Childs, A.M., Cleve, R., Kothari, R., Somma, R.D.: Exponential improvement in precision for simulating sparse Hamiltonians. Forum of Mathematics, Sigma, Vol. 5, e8 (2017). (arXiv:1312.1414v2)
  16. 16.
    Berry, D.W., Childs, A.M., Cleve, R., Kothari, R., Somma, R.D.: Simulating Hamiltonian dynamics with a truncated Taylor series. Phys. Rev. Lett. 114, 090502 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    Zhou, S.S., Wang, J.B.: Efficient quantum circuits for dense circulant and circulant-like operators. R. Soc. Open sci. 4, 160906 (2017)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Cuccaro, S.A., Draper, T.G., Kutin, S.A., Moulton, D.P.: A new quantum ripple-carry addition circuit (2004). (arXiv:quant-ph/0410184)
  19. 19.
    Draper, T.G., Kutin, S.A., Rains, E.M., Svore, K.M.: A logarithmic-depth quantum carry-lookahead adder (2004). (arXiv:quant-ph/0406142)
  20. 20.
    Low, G.H., Chuang, I.L.: Optimal Hamiltonian simulation by quantum signal processing. Phys. Rev. Lett. 118, 010501 (2017)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Aharonov, D., Ta-Shma, A.: In: Larmore L.L., Goemans M.X. (eds.) Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, STOC ’03, pp. 20–29. ACM, New York (2003)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of ScienceXi’an Jiaotong UniversityXi’anChina
  2. 2.Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic DevicesXi’anChina
  3. 3.School of Mathematics and StatisticsWuhan UniversityWuhanChina

Personalised recommendations