Advertisement

Fourier 1-norm and quantum speed-up

  • Sebastián Alberto Grillo
  • Franklin de Lima MarquezinoEmail author
Article
  • 67 Downloads

Abstract

Understanding quantum speed-up over classical computing is fundamental for the development of efficient quantum algorithms. In this paper, we study such problem within the framework of the quantum query model, which represents the probability of output \(x \in \{0,1\}^n\) as a function \(\pi (x)\). We present a classical simulation for output probabilities \(\pi \), whose error depends on the Fourier 1-norm of \(\pi \). Such dependence implies upper-bounds for the quotient between the number of queries applied by an optimal classical algorithm and our quantum algorithm, respectively. These upper-bounds show a strong relation between Fourier 1-norm and quantum parallelism. We show applications to query complexity.

Keywords

Quantum query Randomized query Simulation 

Notes

Acknowledgements

The authors thank R. Portugal, S. Collier, J. Szwarcfiter, and E. Galvão for useful discussions and suggestions. This work was initiated while SAG was at the Federal University of Rio de Janeiro, Brazil. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro - Brasil (FAPERJ), JCNE Grant E-26/203.235/2016.

References

  1. 1.
    Aaronson, S.: Limitations of quantum advice and one-way communication. In: Proceedings of 19th IEEE Annual Conference on Computational Complexity, pp. 320–332. IEEE (2004)Google Scholar
  2. 2.
    Aaronson, S.: BQP and the polynomial hierarchy. In: Proceedings of the Forty-Second ACM Symposium on Theory of Computing, pp. 141–150. ACM (2010)Google Scholar
  3. 3.
    Aaronson, S., Ambainis, A.: The need for structure in quantum speedups. Theory Comput. 10(6), 133–166 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Aaronson, S., Ambainis, A., Iraids, J., Kokainis, M., Smotrovs, J.: Polynomials, quantum query complexity, and Grothendieck’s inequality. In: Proceedings of the 31st Conference on Computational Complexity, CCC’16, pp. 25:1–25:19. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Germany (2016).  https://doi.org/10.4230/LIPIcs.CCC.2016.25
  5. 5.
    Abbott, A.A., Calude, C.S.: Understanding the quantum computational speed-up via de-quantisation. In: Cooper, S.B., Panangaden, P., Kashefi, E. (eds.) Proceedings Sixth Workshop on Developments in Computational Models: Causality, Computation, and Physics, Edinburgh, Scotland, 9–10th July 2010, Electronic Proceedings in Theoretical Computer Science, vol. 26, pp. 1–12. Open Publishing Association (2010).  https://doi.org/10.4204/EPTCS.26.1
  6. 6.
    Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM J. Comput. 37(1), 210–239 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Ambainis, A., Gruska, J., Zheng, S.: Exact quantum algorithms have advantage for almost all Boolean functions. Quantum Inf. Comput. 15(5–6), 435–452 (2015)MathSciNetGoogle Scholar
  8. 8.
    Angluin, D., Valiant, L.G.: Fast probabilistic algorithms for hamiltonian circuits and matchings. J. Comput. Syst. Sci. 18(2), 155–193 (1979)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Barnum, H., Saks, M., Szegedy, M.: Quantum query complexity and semi-definite programming. In: Proceedings of the 18th IEEE Annual Conference on Computational Complexity, pp. 179–193 (2003).  https://doi.org/10.1109/CCC.2003.1214419
  10. 10.
    Beals, R., Buhrman, H., Cleve, R., Mosca, M., De Wolf, R.: Quantum lower bounds by polynomials. J. ACM 48(4), 778–797 (2001)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Bell, J.S.: On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38(3), 447 (1966)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Buhrman, H., De Wolf, R.: Complexity measures and decision tree complexity: a survey. Theor. Comput. Sci. 288(1), 21–43 (2002)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100(5), 050502 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    Datta, A., Vidal, G.: Role of entanglement and correlations in mixed-state quantum computation. Phys. Rev. A 75(4), 042310 (2007)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    De Wolf, R.: A brief introduction to fourier analysis on the Boolean cube. Theory Comput. Grad. Surv. 1, 1–20 (2008)CrossRefGoogle Scholar
  16. 16.
    Deutsch, D.: Quantum theory, the Church–Turing principle and the universal quantum computer. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 400, pp. 97–117. The Royal Society (1985)Google Scholar
  17. 17.
    Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 439, pp. 553–558. The Royal Society (1992)Google Scholar
  18. 18.
    Grillo, S., Marquezino, F.: Quantum query as a state decomposition. Theor. Comput. Sci. 736, 62–75 (2018).  https://doi.org/10.1016/j.tcs.2018.03.017 MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Howard, M., Wallman, J., Veitch, V., Emerson, J.: Contextuality supplies the ’magic’ for quantum computation. Nature 510(7505), 351–355 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    Jozsa, R.: Entanglement and quantum computation. In: Huggett, S.A., Mason, L.J., Tod, K.P., Tsou, S.T., Woodhouse, N.M.J. (eds.) The Geometric Universe: Science, Geometry, and the Work of Roger Penrose, vol. 27, pp. 369–379. Oxford University Press, Oxford (1998)Google Scholar
  21. 21.
    Jozsa, R., Linden, N.: On the role of entanglement in quantum-computational speed-up. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 459, pp. 2011–2032. The Royal Society (2003)Google Scholar
  22. 22.
    Knill, E., Laflamme, R.: Power of one bit of quantum information. Phys. Rev. Lett. 81(25), 5672 (1998)ADSCrossRefGoogle Scholar
  23. 23.
    Kochen, S., Specker, E.P.: The problem of hidden variables in quantum mechanics. In: Hooker, C.A. (eds.) The Logico-Algebraic Approach to Quantum Mechanics, vol. 5a, pp. 293–328. Springer, Dordrecht (1975).  https://doi.org/10.1007/978-94-010-1795-4_17
  24. 24.
    Montanaro, A.: Some applications of hypercontractive inequalities in quantum information theory. J. Math. Phys. 53(12), 122206 (2012)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    O’Donnell, R.: Analysis of Boolean Functions. Cambridge University Press, Cambridge (2014)CrossRefGoogle Scholar
  26. 26.
    Ozols, M., Roetteler, M., Roland, J.: Quantum rejection sampling. ACM Trans. Comput. Theory 5(3), 11 (2013)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Reichardt, B.W., Spalek, R.: Span-program-based quantum algorithm for evaluating formulas. In: Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing, pp. 103–112. ACM (2008)Google Scholar
  28. 28.
    Rötteler, M.: Quantum algorithms for highly non-linear Boolean functions. In: Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 448–457. SIAM (2010)Google Scholar
  29. 29.
    Vidal, G.: Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett. 91(14), 147902 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Universidad Autónoma de AsunciónAsunciónBrazil
  2. 2.Universidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations