Remote preparation of four-qubit states via two-qubit maximally entangled states

  • Yang Xue
  • Lei Shi
  • Xinyu Da
  • Kaihang Zhou
  • Lihua Ma
  • Jiahua WeiEmail author
  • Longqiang Yu
  • Hang Hu


In this paper, an efficient scheme of remotely preparing four-qubit quantum states via two-qubit maximally entangled states is proposed. This scheme can be accomplished by using appropriate unitary transformations and some classical communication. The detailed processes for preparation of four-qubit states are presented in the general case and two special cases, respectively. The method of constructing special measurement basis in general case is provided, and the similar methods for real-parameter state case and equatorial state case are also discussed. Meanwhile, the probabilities of successful preparation under each case are calculated in our schemes. The results show that the successful probability is only 1 / 16 in the general case, and the probability can reach up to 100% when the relative phase factors are zero or the amplitude parameters are 1 / 4.


Remote state preparation Four-qubit state Maximally entangled state 



The authors thank Y. Zhu for helpful discussions. This work is supported by the Program for National Natural Science Foundation of China (Grant Nos. 61671475, 61271250, 61803382) and Natural Science Basic Research Plan in Shaanxi Province of China (No. 2018JQ6020) and China Postdoctoral Science Foundation Funded Project (Project No.2018M643869).


  1. 1.
    Lo, H.K.: Classical communication cost in distributed quantum information processing–a generalization of quantum communication complexity. Phys. Rev. A. 62(1), 012313 (2000)ADSGoogle Scholar
  2. 2.
    Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87(7), 077902 (2001)ADSGoogle Scholar
  3. 3.
    Bennett, C.H., Hayden, P., Leung, D.W., Shor, P.W., Winter, A.: Remote preparation of quantum states. IEEE Trans. Inf. Theory 51(1), 56–74 (2003)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Situ, H.Z.: Controlled simultaneous teleportation and dense coding. Int. J. Theor. Phys. 53(3), 1003–1009 (2014)zbMATHGoogle Scholar
  5. 5.
    Li, Y.H., Li, X.L., Nie, L.P., Sang, M.H.: Quantum teleportation of three and four-qubit state using multi-qubit cluster states. Int. J. Theor. Phys. 55(3), 1820–1823 (2016)zbMATHGoogle Scholar
  6. 6.
    Dai, H.Y., Chen, P.X., Li, C.Z.: Probabilistic teleportation of an arbitrary two-particle state by a partially entangled GHZ state and W state. Opt. Commun. 231(1), 281–287 (2004)ADSGoogle Scholar
  7. 7.
    Bennett, C.H., Brassard, G., Grepeau, C., Jozsa, R., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)MathSciNetzbMATHADSGoogle Scholar
  8. 8.
    Zhao, N., Li, M., Chen, N., Zhu, C.H., Pei, C.X.: Quantum teleportation of eight-qubit state via six-qubit cluster state. Int. J. Theor. Phys. 57(2), 516–522 (2018)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A. 63(63), 94–98 (2001)Google Scholar
  10. 10.
    Hua, C., Chen, Y.X.: Deterministic remote preparation of an arbitrary qubit state using a partially entangled state and finite classical communication. Quantum Inf. Process. 15(11), 1–11 (2016)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Yang, R.Y., Liu, J.M.: Enhancing the fidelity of remote state preparation by partial measurements. Quantum Inf. Process. 16(5), 125 (2017)MathSciNetzbMATHADSGoogle Scholar
  12. 12.
    Wei, J.H., Dai, H.Y., Zhang, M.: Two efficient schemes for probabilistic remote state preparation and the combination of both schemes. Quantum Inf. Process. 13(9), 2115–2125 (2014)MathSciNetzbMATHADSGoogle Scholar
  13. 13.
    Dai, H.Y., Zhang, M., Zhang, Z.R., Xi, Z.R.: Probabilistic remote preparation of a four-particle entangled W state for the general case and for all kinds of the special cases. Commun. Theor. Phys. 60(3), 313–322 (2013)zbMATHADSGoogle Scholar
  14. 14.
    Dai, H.Y., Chen, P.X., Liang, L.M., Li, C.Z.: Classical communication cost and remote preparation of the four-particle GHZ class state. Phys. Lett. A. 355(4), 285–288 (2006)ADSGoogle Scholar
  15. 15.
    Wei, J.H., Shi, L., Xu, Z.Y., Ni, Y.H., Han, Z.X., Hu, Q.Q., Jiang, J.: Probabilistic controlled remote state preparation of an arbitrary two-qubit state via partially entangled states with multi parties. Int. J. Quantum. Inf. 16, 1850001 (2018)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Huang, L., Zhao, H.X.: Controlled remote state preparation of an arbitrary two-qubit state by using GHZ states. Int. J. Theor. Phys. 56(3), 1–5 (2017)zbMATHADSGoogle Scholar
  17. 17.
    Sang, M.H., Nie, Y.Y.: Deterministic tripartite controlled remote state preparation. Int. J. Theor. Phys. 56(10), 3092–3095 (2017)zbMATHGoogle Scholar
  18. 18.
    Adepoju, A.G., Falaye, B.J., Sun, G.H., Camacho, O., Dong, S.H.: Joint remote state preparation of two-qubit equatorial state in quantum noisy channels. Phys. Rev. A. 381(6), 581–587 (2017)Google Scholar
  19. 19.
    Berry, D.W., Sanders, B.C.: Optimal remote state preparation. Phys. Rev. Lett. 90(5), 057901 (2003)ADSGoogle Scholar
  20. 20.
    Li, X., Ghose, S.: Optimal joint remote state preparation of equatorial states. Quantum Inf. Process. 14(12), 4585–4592 (2015)MathSciNetzbMATHADSGoogle Scholar
  21. 21.
    Dai, H.Y., Chen, P.X., Zhang, M., Li, C.Z.: Remote preparation of an entangled two-qubit state with three parties. Chin. Phys. B 17(1), 27 (2008)ADSGoogle Scholar
  22. 22.
    Wang, C., Zeng, Z., Li, X.H.: Controlled remote state preparation via partially entangled quantum channel. Quantum Inf. Process. 14(3), 1077–1089 (2015)MathSciNetzbMATHADSGoogle Scholar
  23. 23.
    Liu, H.H., Cheng, L.Y., Shao, X.Q., Sun, L.L., Zhang, S., Yeon, K.H.: Joint remote state preparation of arbitrary two- and three-particle states. Int J. Theor. Phys. 50(10), 3023–3032 (2011)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Zhan, Y.B., Ma, P.C.: Deterministic joint remote preparation of arbitrary two- and three-qubit entangled states. Quantum Inf. Process. 12(2), 997–1009 (2013)MathSciNetzbMATHADSGoogle Scholar
  25. 25.
    Wei, J.H., Shi, L., Ma, L.H., Xue, Y., Zhuang, X.C., Kang, Q.Y.: Remote preparation of an arbitrary multi-qubit state via two-qubit entangled states. Quantum Inf. Process. 16(10), 260 (2017)MathSciNetzbMATHADSGoogle Scholar
  26. 26.
    Wei, J.H., Dai, H.Y., Zhang, M., Yang, L., Kuang, J.: Two novel schemes for probabilistic remote state preparation and the physical realization via the linear optics. Int. J. Quantum Inf. 14(1), 1650003 (2016)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Dai, H.Y., Zhang, M., Chen, J.M.: Probabilistic remote preparation of a high-dimensional equatorial multiqubit with four-party and classical communication cost. Chin. Phys. B 20(5), 050310 (2011)ADSGoogle Scholar
  28. 28.
    Peng, X., Zhu, X., Fang, X., Feng, M., Liu, M., Gao, K.: Experimental implementation of remote state preparation by nuclear magnetic resonance. Phys. Rev. A 306(5), 271–276 (2002)Google Scholar
  29. 29.
    Ma, P.C., Chen, G.B., Li, X.W., Zhang, J., Zhan, Y.B.: Asymmetric controlled bidirectional remote state preparation by using a ten-qubit entangled state. Int J. Theor. Phys. 56(9), 2716–2723 (2017)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Dong, C., Zhao, S.H., Deng, M.Y.: Measurement-device-independent quantum key distribution with multiple crystal heralded source with post-selection. Quantum Inf. Process. 17(3), 50 (2018)MathSciNetzbMATHADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yang Xue
    • 1
  • Lei Shi
    • 1
  • Xinyu Da
    • 1
  • Kaihang Zhou
    • 1
  • Lihua Ma
    • 1
  • Jiahua Wei
    • 1
    Email author
  • Longqiang Yu
    • 1
  • Hang Hu
    • 1
  1. 1.Information and Navigation CollegeAir Force Engineering UniversityXi’anPeople’s Republic of China

Personalised recommendations