Experimental observations of 1D quantum walks in a limited region

  • Xiao-Chuan HanEmail author
  • Lan-Tian Feng
  • Yu-Xuan Li
  • Lan-Xuan Zhang
  • Jun-Feng Song
  • Yong-Sheng Zhang


The quantum walk (QW) is the quantum counterpart of the classical walk (CW) and is widely used in universal quantum computations. QWs provide exponential acceleration in hitting times and polynomial acceleration in searching times. Taking advantage of the integration and stability of waveguide structures, large-scale QWs can be implemented on chips. Here, we simulate both CWs and QWs in limited regions to qualitatively analyze the boundary conditions. Subsequently, we used a silicon chip to achieve 21-step QWs in a limited region and experimentally measured the photon number distributions by utilizing the fiber-coupling platform. Then we simulated the theoretical result by using the splitting ratio of the directional couplers which was experimentally obtained by measuring an individual directional coupler and the phase difference of the boundary waveguides which was fit from the experimental results. We also simulated the photon number distributions that are caused by the parameters of the waveguides, such as the splitting ratio, the phase difference, and the size of the walking region.


Quantum walk Classical walk Waveguide structure Boundary conditions 



The work was supported by the National Natural Science Foundation of China (Grant Nos. 61627820, 11674306, 61590932, and 61377048).


  1. 1.
    Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48(2), 1687 (1993)ADSGoogle Scholar
  2. 2.
    Kempe, J.: Quantum random walks: an introductory overview. Contemp. Phys. 50(1), 339–359 (2009)ADSGoogle Scholar
  3. 3.
    Accardi, L., Watson, G.S.: Quantum random walks. Quantum Probab. Appl. IV 11(1), 211–227 (1989)zbMATHGoogle Scholar
  4. 4.
    Watrous, J.: Quantum simulations of classical random walks and undirected graph connectivity. In: Proceedings. Fourteenth IEEE Conference on Computational Complexity, 1999, pp. 180–187 (2001)Google Scholar
  5. 5.
    Broome, M.A., Fedrizzi, A., Lanyon, B.P., Kassal, I., Aspuruguzik, A., White, A.G.: Discrete single-photon quantum walks with tunable decoherence. Phys. Rev. Lett. 104(15), 153602 (2010)ADSGoogle Scholar
  6. 6.
    Lovett, B.N., Cooper, S., Everitt, M., Trevers, M., Kendon, : Universal quantum computation using the discrete time quantum walk. Physics 81(4), 82–82 (2009)MathSciNetGoogle Scholar
  7. 7.
    Farhi, E., Gutmann, S.: Quantum computation and decision trees. Phys. Rev. A 58(2), 915–928 (1997)ADSMathSciNetGoogle Scholar
  8. 8.
    Konno, N.: Continuous-time quantum walk on the line. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 72(2), 986–1023 (2004)MathSciNetGoogle Scholar
  9. 9.
    Jafarizadeh, M.A., Salimi, S.: Investigation of continuous-time quantum walk via spectral distribution associated with adjacency matrix. Ann. Phys. 322(5), 1005–1033 (2007)ADSMathSciNetzbMATHGoogle Scholar
  10. 10.
    Brun, T.A., Carteret, H.A., Ambainis, A.: Quantum random walks with decoherent coins. Phys. Rev. A 67(3), 535–542 (2003)MathSciNetGoogle Scholar
  11. 11.
    Kempe, J.: Quantum random walks hit exponentially faster. Prob. Theory Relat. Fields 133(2), 215–235 (2005)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Shenvi, N., Kempe, J., Whaley, K.B.: Quantum random-walk search algorithm. Phys. Rev. A 67(5), 125–128 (2002)Google Scholar
  13. 13.
    Childs, A.M., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman, D.A.: Exponential algorithmic speedup by a quantum walk. In: ACM Symposium on Theory of Computing, pp. 59–68 (2003)Google Scholar
  14. 14.
    Grover, L.K., Patel, A.D.: Quantum search. In: Encyclopedia of Algorithms, pp. 1–99 (2008)Google Scholar
  15. 15.
    Childs, A.M.: Universal computation by quantum walk. Phys. Rev. Lett. 102(18), 180501 (2009)ADSMathSciNetGoogle Scholar
  16. 16.
    Childs, A.M., Webb, Z.: Universal computation by multiparticle quantum walk. Science 339(6121), 791 (2013)ADSMathSciNetzbMATHGoogle Scholar
  17. 17.
    Kitagawa, T., Rudner, M.S., Berg, E., Demler, E.: Exploring topological phases with quantum walks. Phys. Rev. A 82(3), 21504–21510 (2010)Google Scholar
  18. 18.
    Kitagawa, T., Broome, M.A., Fedrizzi, A., Rudner, M.S., Berg, E., Kassal, I., Aspuruguzik, A., Demler, E., White, A.G.: Observation of topologically protected bound states in photonic quantum walks. Nature Commun. 3(251), 882 (2012)Google Scholar
  19. 19.
    Schreiber, A., Cassemiro, K.N., Potocek, V., Gábris, A., Mosley, P.J., Andersson, E., Jex, I., Silberhorn, C.: Photons walking the line: a quantum walk with adjustable coin operations. Phys. Rev. Lett. 104(5), 050502 (2010)ADSGoogle Scholar
  20. 20.
    Schreiber, A., Gábris, A., Rohde, P.P., Laiho, K., Štefaňák, M., Potoček, V., Hamilton, C., Jex, I., Silberhorn, C.: A 2D quantum walksimulation of two-particle dynamics. Science 336(6077), 55–58 (2012)ADSGoogle Scholar
  21. 21.
    Du, J.-F., Li, H., Xu, X.-D., Shi, M.-J., Wu, J.-H., Zhou, X.-Y., Han, R.-D.: Experimental implementation of the quantum random-walk algorithm. Phys. Rev. A 67(4), 645–648 (2002)Google Scholar
  22. 22.
    Chandrashekar, C.M.: Implementing the one-dimensional quantum (hadamard) walk using a Bose–Einstein condensate. Phys. Rev. A 74(3), 152–152 (2006)Google Scholar
  23. 23.
    Grossman, J.M., Ciampini, D., D’Arcy, K., Helmerson, M., Lett, P.D., Phillips, W.D., Vaziri, A., Rolston, S.L.: Implementation of a quantum random walk with a sodium Bose–Einstein condensate. In: APS Division of Atomic, Molecular and Optical Physics Meeting (2004)Google Scholar
  24. 24.
    Dür, W., Raussendorf, R., Kendon, V.M., Briegel, H.J.: Quantum walks in optical lattices. Phys. Rev. A 66(5), 052319 (2002)ADSGoogle Scholar
  25. 25.
    Eckert, K., Mompart, J., Birkl, G., Lewenstein, M.: One- and two-dimensional quantum walks in arrays of optical traps. Phys. Rev. A 72(1), 573–573 (2005)Google Scholar
  26. 26.
    Sansoni, L., Sciarrino, F., Vallone, G., Mataloni, P., Crespi, A., Ramponi, R., Osellame, R.: Two-particle bosonic–fermionic quantum walk via integrated photonics. Phys. Rev. Lett. 108(1), 010502 (2012)ADSGoogle Scholar
  27. 27.
    Preiss, P.M., Ma, R., Tai, M.E., Lukin, A., Rispoli, M., Zupancic, P., Lahini, Y., Islam, R., Greiner, M.: Strongly correlated quantum walks in optical lattices. Science 347(6227), 1229–33 (2015)ADSMathSciNetzbMATHGoogle Scholar
  28. 28.
    Schmitz, H., Matjeschk, R., Schneider, C., Glueckert, J., Enderlein, M., Huber, T., Schaetz, T.: Quantum walk of a trapped ion in phase space. Phys. Rev. Lett. 103(9), 090504 (2009)ADSGoogle Scholar
  29. 29.
    Travaglione, B.C., Milburn, G.J.: Implementing the quantum random walk. Phys. Rev. A 65(3), 032310 (2001)ADSGoogle Scholar
  30. 30.
    Miller, S.E.: Integrated optics: an introduction. Bell Labs Tech. J. 48(7), 2059–2069 (2014)Google Scholar
  31. 31.
    Farina, J.: Integrated optics: theory and technology. Opt. Acta Int. J. Opt. 30(4), 415–415 (2003)MathSciNetGoogle Scholar
  32. 32.
    Wang, R., Sprengel, S., Boehm, G., Muneeb, M., Baets, R., Amann, M.C., Roelkens, G.: 2.3 \(\mu \)m range inp-based type-II quantum well fabry-perot lasers heterogeneously integrated on a silicon photonic integrated circuit. Opt. Express 24(18), 21081 (2016)ADSGoogle Scholar
  33. 33.
    Perets, H.B., Lahini, Y., Pozzi, F., Sorel, M., Morandotti, R., Silberberg, Y.: Realization of quantum walks with negligible decoherence in waveguide lattices. Phys. Rev. Lett. 100(17), 170506 (2008)ADSGoogle Scholar
  34. 34.
    Bromberg, Y., Lahini, Y., Morandotti, R., Silberberg, Y.: Quantum and classical correlations in waveguide lattices. Phys. Rev. Lett. 102(25), 253904 (2009)ADSGoogle Scholar
  35. 35.
    Politi, A., Cryan, M.J., Rarity, J.G., Yu, S.-Y., O’Brien, J.L.: Silica-on-silicon waveguide quantum circuits. Science 320(5876), 646–9 (2008)ADSGoogle Scholar
  36. 36.
    Peruzzo, A., Lobino, M., Matthews, J.C., Matsuda, N., Politi, A., Poulios, K., Zhou, X.Q., Lahini, Y., Ismail, N., Wörhoff, K.: Quantum walks of correlated photons. Science 329(5998), 1500–1503 (2010)ADSGoogle Scholar
  37. 37.
    Crespi, A., Osellame, R., Ramponi, R., Giovannetti, V., Fazio, R., Sansoni, L., De Nicola, F., Sciarrino, F., Mataloni, P.: Anderson localization of entangled photons in an integrated quantum walk. Nat. Photon. 7(4), 322–328 (2013)ADSGoogle Scholar
  38. 38.
    Schreiber, A., Cassemiro, K.N., Potocek, V., Gábris, A., Jex, I., Silberhorn, C.: Decoherence and disorder in quantum walks: from ballistic spread to localization. Phys. Rev. Lett. 106(18), 180403 (2011)ADSGoogle Scholar
  39. 39.
    Schreiber, A., Cassemiro, K.N., Potocek, V., Gábris, A., Mosley, P., Andersson, E., Jex, I., Silberhorn, C.: Photons walking the line: a quantum walk with adjustable coin operations. Phys. Rev. Lett. 104(5), 050502 (2010)ADSGoogle Scholar
  40. 40.
    Boutari, J., Feizpour, A., Barz, S., Franco, C.D., Kim, M.S., Kolthammer, W.S., Walmsley, I.A.: Large scale quantum walks by means of optical fiber cavities. J. Opt. 18, 094007 (2016)ADSGoogle Scholar
  41. 41.
    Shenvi, N., Kempe, J., Whaley, K.B.: Quantum random-walk search algorithm. Phys. Rev. A 67(5), 052307 (2003)ADSGoogle Scholar
  42. 42.
    Potoček, V., Gábris, A., Kiss, T., Jex, I.: Optimized quantum random-walk search algorithms on the hypercube. Phys. Rev. A 79(1), 012325 (2009)ADSGoogle Scholar
  43. 43.
    Childs, A.M., Farhi, E., Gutmann, S.: An example of the difference between quantum and classical random walks. Quantum Inf. Process. 1(1–2), 35–43 (2001)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Feng, L.-T., Zhang, M., Zhou, Z.-Y., Li, M., Xiong, X., Yu, L., Shi, B.-S., Guo, G.-P., Dai, D.-X., Ren, X.-F.: On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom. Nat. Commun. 7, 11985 (2016)ADSGoogle Scholar
  45. 45.
    Flamini, F., Spagnolo, N., Sciarrino, F.: Photonic quantum information processing: a review. arXiv:1803.02790
  46. 46.
    Harris, N.C., Steinbrecher, G.R., Prabhu, M., Lahini, Y., Mower, J., Bunandar, D., Chen, C., Wong, F.N.C., Baehrjones, T., Hochberg, M.: Quantum transport simulations in a programmable nanophotonic processor. Nat. Photon. 11, 447–452 (2017)ADSGoogle Scholar
  47. 47.
    Han, X.-C., Zhang, D.-W., Li, Y.-X., Song, J.-F., Zhang, Y.-S.: Estimation of photon counting statistics with imperfect detectors. Chin. Phys. B 27(7), 074208 (2018)ADSGoogle Scholar
  48. 48.
    Cozzini, M., Ionicioiu, R., Zanardi, P.: Quantum fidelity and quantum phase transitions in matrix product states. Phys. Rev. B 76(10), 104420 (2007)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory on Integrated Opto-Electronics, College of Electronic Science and EngineeringJilin UniversityChangchunChina
  2. 2.Key Laboratory of Quantum InformationUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations