Advertisement

A new n-party quantum secret sharing model based on multiparty entangled states

  • Ke-jia Zhang
  • Xue Zhang
  • Heng-yue Jia
  • Long ZhangEmail author
Article
  • 17 Downloads

Abstract

Recently, multiparty entanglement is becoming an important physical resource to design some typical quantum cryptography protocols. In this paper, we firstly proposed two special QSS protocols with the multiparty entangled states \(|\chi _{n}\rangle \) and \(|S_{n}\rangle \). Then, their security has been proved to resist existing attacks. Furthermore, a new QSS model has been summarized by analyzing the property of the used multiparty entangled states. Moreover, compared with some other QSS protocols based on multiparty entangled states, it can be seen that our protocol is efficient in quantum communication and computation.

Keywords

Quantum cryptography Quantum secret sharing Multiparty entanglement states 

Notes

Acknowledgements

This work is supported by National Natural Science Foundation of China under Grant No. 61802118, Natural Science Foundation of Heilongjiang Province under Grant No.A2016007, Open Foundation of State key Laboratory of Networking and Switching Technology (BUPT) under Grant No. SKLNST-2018-1-07, University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province supported under Grant No.UNPYSCT-2018015, Heilongjiang University Innovation Fund for Graduates under Grant No.YJSCX2018-159HLJU and Hei Long Jiang Postdoctoral Foundation under Grant No.LBH-Z17048.

References

  1. 1.
    Bennett, C., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, pp. 175–179. IEEE Press, New York (1984)Google Scholar
  2. 2.
    Ekert, A.: Quantum cryptography based on Bell theorem. Phys. Rev. Lett. 67, 661 (1991)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Bennett, C.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Bennett, C., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Gao, F., Guo, F.-Z., Wen, Q.-Y., Zhu, F.-C.: Quantum key distribution without alternative measurements and rotations. Phys. Lett. A 349, 53 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    Deng, F.-G., Long, G.-L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    Deng, F.-G., Long, G.-L.: Reply to “Comment on ‘Secure direct communication with a quantum one-time-pad”’. Phys. Rev. A 72, 016302 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    Lin, S., Wen, Q.-Y., Zhu, F.-C.: Quantum secure direct communication with \(\chi \)-type entangled states. Phys. Rev. A 78, 064304 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    Jakobi, M., Simon, C., Gisin, N., et al.: Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. A 83, 022301 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    Gao, F., Liu, B., Huang, W., Wen, Q.-Y.: Postprocessing of the oblivious key in quantum private query. IEEE. J. Sel. Top. Quant. 21, 6600111 (2015)Google Scholar
  12. 12.
    Wei, C.-Y., Wang, T.-Y., Gao, F.: Practical quantum private query with better performance in resisting joint-measurement attack. Phys. Rev. A 93, 042318 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    Wei, C.-Y., Cai, X.-Q., Liu, B., et al.: A generic construction of quantum-oblivious-key-transfer-based private query with ideal database security and zero failure. IEEE Trans. Comput. 67, 2–8 (2018)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Liu, B., Gao, F., Huang, W.: QKD-based quantum private query without a failure probability. Sci. China Phys. Mech. Astron. 58, 100301 (2015)CrossRefGoogle Scholar
  15. 15.
    Gao, F., Liu, B., Wen, Q.-Y., Chen, H.: Flexible quantum private queries based on quantum key distribution. Opt. Express 20, 17411 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Wei, C.Y., Gao, F., Wen, Q.-Y., Wang, T.-Y.: Practical quantum private query of blocks based on unbalanced-state Bennett-Brassard-1984 quantum-key-distribution protocol. Sci. Rep. 4, 7537 (2014)CrossRefGoogle Scholar
  17. 17.
    Zhang, J.-L., Guo, F.-Z., Gao, F., et al.: Private database queries based on counterfactual quantum key distribution. Phys. Rev. A 88, 022334 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Zeng, G.-H., Keitel, C.-H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65, 042312 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    Li, Q., Chan, W.-H., Long, D.-Y.: Arbitrated quantum signature scheme using Bell states. Phys. Rev. A 79, 054307 (2009)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Zou, X.-F., Qiu, D.-W.: Security analysis and improvements of arbitrated quantum signature schemes. Phys. Rev. A 82, 042325 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    Gao, F., Qin, S.-J., Guo, F.-Z., Wen, Q.-Y.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A 84, 022344 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    Zhang, K.-J., Zhang, W.-W., Li, D.: Improving the security of arbitrated quantum signatureagainst the forgery attack. Quant. Inf. Proc. 12, 2655–2669 (2013)CrossRefGoogle Scholar
  23. 23.
    Zhang, K.-J., Qin, S.-J., Sun, Y., Song, T.-T., Su, Q.: Reexamination of arbitrated quantum signature: the impossible and the possible. Quant. Inf. Proc. 12, 3127–3141 (2013)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Cleve, R., Gottesman, D., Lo, H.-K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648 (1999)ADSCrossRefGoogle Scholar
  26. 26.
    Xiao, L., Long, G.-L., Deng, F.-G., Pan, J.-W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    Kunar Singh, S., Srikanth, R.: Generalized quantum secret sharing. Phys. Rev. A 71, 012328 (2005)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Li, Y., Zhang, K., Peng, K.: Multiparty secret sharing of quantum information based on entanglement swapping. Phys. Lett. A 324(5–6), 420–424 (2004)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Wang, T.-Y., Wen, Q.-Y., Gao, F., Lin, S., Zhu, F.-C.: Cryptanalysis and improvement of multiparty quantum secret sharing schemes. Phys. Lett. A 373, 65 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    Guo, G.-P., Guo, G.-C.: Quantum secret sharing without entanglement. Phys. Lett. A 310(4), 247–251 (2003)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Zhang, Z.-J., Li, Y., Man, Z.-X.: Multiparty quantum secret sharing. Phys. Lett. A 71, 044301 (2005)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Deng, F.-G., Li, X.-H., Zhou, H.-Y., Zhang, Z.-J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Lett. A 72, 044302 (2005)Google Scholar
  33. 33.
    Deng, F.-G., Li, X.-H., Zhou, H.-Y., Zhang, Z.-J.: Erratum: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Lett. A 73, 049901 (2006)Google Scholar
  34. 34.
    Qin, S.-J., Gao, F., Wen, Q.-Y., Zhu, F.-C.: Improving the security of multiparty quantum secret sharing against an attack with a fake signal. Phys. Lett. A 357, 101 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    Han, L.-F., Liu, Y.-M., Liu, J., Zhang, Z.J.: Multiparty quantum secret sharing of secure direct communication using single photons. Opt. Commun. 281, 2690 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    Wang, T.-Y., Wen, Q.-Y.: Security of a kind of quantum secret sharing with single photons. Quantum Inf. Comput. 11, 434 (2011)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Hsieh, C.R., Tasi, C.W., Hwang, T.: Quantum secret sharing using GHZ-like state. Commun. Theor. Phys. 54, 1019–1022 (2010)CrossRefGoogle Scholar
  38. 38.
    Dehkordi, M.H., Fattahi, E.: A novel and efficient multiparty quantum secret sharing scheme using entangled states. Sci. China phy. Mech. Astron. 55, 1828–1831 (2012)CrossRefGoogle Scholar
  39. 39.
    Rahaman, R., Parker, M.G.: Quantum scheme for secret sharing based on local distinguishabality. Phys. Rev. A 91, 022330 (2015)ADSCrossRefGoogle Scholar
  40. 40.
    Yang, Y.H., et al.: Quantum secret sharing via local operations and classical communication. Sci. Rep. 5, 16967 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    Wang, J.-T., Li, L.-X., Peng, H.-P., Yang, Y.-X.: Quantum-secret-sharing based on local distinguishability of orthogonal multiqudit entangled states. Phys. Rev. A 95, 022330 (2017)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    Chen, X.-B., Dou, Z., Xu, G., He, X.-Y., Yang, Y.-X.: A kind of universal quantum secret sharing protocol. Sci. Rep. 7, 39845 (2017)ADSCrossRefGoogle Scholar
  43. 43.
    Wang, Q.-L., Yu, C.-H., Gao, F., Qi, H.-Y., Wen, Q.-Y.: Self-tallying quantum anonymous voting. Phys. Rev. A 94, 022333 (2016)ADSCrossRefGoogle Scholar
  44. 44.
    Ye, T.-Y., Ji, Z.-X.: Two-party quantum private comparison with five-qubit enyangled states. Int. J. Theor. Phys. 56, 1517–1529 (2017)CrossRefGoogle Scholar
  45. 45.
    Gao, F., Guo, F.-Z., Wen, Q.-Y., Zhu, F.-C.: Comment on “Experimental demonstration of a quantum protocol for byzantine agreement and liar detection”. Phys. Rev. Lett. 101, 208901 (2008)ADSCrossRefGoogle Scholar
  46. 46.
    Zhang, Y.-S., Li, C.-F., Guo, G.-C.: Comment on “Quantum key distribution without alternative measurements”. Phys. Rev. A 63, 036301 (2001)ADSCrossRefGoogle Scholar
  47. 47.
    W’ojcik, A.: Eavesdropping on the ping-pong quantum communication protocol. Phys. Rev. Lett. 90, 157901 (2003)ADSCrossRefGoogle Scholar
  48. 48.
    Huang, W., Wen, Q.-Y., Liu, B., Su, Q., Qin, S.-J., Gao, F.: Quantum anonymous ranking. Phys. Rev. A 89, 032325 (2014)ADSCrossRefGoogle Scholar
  49. 49.
    Cabello, A.: N-particle N-level singlet states: some properties and applications. Phys. Rev. Lett. 89, 100402 (2002)ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    Qin, H., Tso, R.: Efficient quantum secret sharing based on special multi-dimensional GHZ state. Opt. Quant. Electron. 50, 167 (2018)CrossRefGoogle Scholar
  51. 51.
    Yu, K.-F., Gu, J., Hwang, T., Gope, P.: Multi-party semi-quantum key distribution-convertible multi-party semi-quantum secret sharing. Quant. Inf. Proc. 16, 194 (2017)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Yang, W., Huang, L., Shi, R., et al.: Secret sharing based on quantum Fourier transform. Quant. Inf. Proc. 12, 2465–2474 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ke-jia Zhang
    • 1
    • 2
    • 3
  • Xue Zhang
    • 1
  • Heng-yue Jia
    • 4
  • Long Zhang
    • 1
    • 3
    Email author
  1. 1.School of Mathematical ScienceHeilongjiang UniversityHarbinChina
  2. 2.State Key Laboratory of Networking and Switching TechnologyBeijing University of Posts and TelecommunicationsBeijingChina
  3. 3.Heilongjiang Provincial Key Laboratory of the Theory and Computation of Complex SystemsHarbinChina
  4. 4.School of InformationCentral University of Finance and EconomicsBeijingChina

Personalised recommendations