Advertisement

Enhancing non-local correlations in a dissipative two-qubit system via dipole–dipole interplay

  • A.-B. A. MohamedEmail author
  • N. Metwally
Article
  • 18 Downloads

Abstract

The behavior of the generated non-local correlations between two qubits interacting with a linear/nonlinear cavity mode is studied. The behavior of these correlations is discussed in the presence/absence of the dipole–dipole interaction and the intrinsic noise. These correlations is quantified by using two versions of measurement-induced non-locality and the logarithms negative entanglement. The effect of the atomic and field parameters on the behavior of these correlations is discussed. The sensitivity of the used measures on these correlations are investigated, where different phenomena are predicated as collapse/revival, sudden death/birth and long-lived correlations. It is shown that, by switching on the dipole–dipole interaction, the amplitudes of the oscillations decrease and consequently the correlations between the atomic subsystem increase. Moreover, it overcomes the decay due to the intrinsic noise and inhibits the deterioration on the generated non-local correlation between the atomic system.

Keywords

Non-local correlations Nonlinear interaction Dipole–dipole interaction 

Notes

Acknowledgements

The author is very grateful to the referees for their important remarks which have helped him to improve the manuscript.

References

  1. 1.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  2. 2.
    Kargarian, M., Jafari, R., Langari, A.: Renormalization of concurrence: the application of the quantum renormalization group to quantum-information systems. Phys. Rev. A 76, 060304 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    Bianchi, E., De Lorenzo, T., Smerlak, M.: Entanglement entropy production in gravitational collapse: covariant regularization and solvable models. J. High Energy Phys. 2016, 180 (2015)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Kaufman, A.M., Tai, M.E., Lukin, A., Rispoli, M., Schittko, R., Preiss, P.M., Greiner, M.: Quantum thermalization through entanglement in an isolated many-body system. Science 353, 794 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    Clauser, J.F., Horne, M.A., Shimony, A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969)ADSCrossRefGoogle Scholar
  6. 6.
    Luo, S.: Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77, 022301 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Luo, S., Fu, S.: Measurement-induced nonlocality. Phys. Rev. Lett. 106, 120401 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899 (2001)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Dakic, B., Vedral, V., Brukner, C.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Hu, M.-L., Hu, X., Wang, J., Peng, Y., Zhang, Y.-R., Fan, H.: Quantum coherence and geometric quantum discord. Phys. Rep. 762, 1–100 (2018)ADSzbMATHGoogle Scholar
  12. 12.
    Paula, F.M., de Oliveira, T.R., Sarandy, M.S.: Geometric quantum discord through the Schatten 1-norm. Phys. Rev. A 87, 064101 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    Hu, M.L., Fan, H.: Measurement-induced nonlocality based on the trace norm. New J. Phys. 17, 033004 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    Xi, Z., Wang, X., Li, Y.: Measurement-induced nonlocality based on the relative entropy. Phys. Rev. A 85, 042325 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    Li, L., Wang, Q.W., Shen, S.Q., Li, M.: Measurement-induced nonlocality based on Wigner–Yanase skew information. Europhys. Lett. 114, 10007 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    Datta, A.: Quantum discord between relatively accelerated observers. Phys. Rev. A 80, 052304 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    Mohamed, A.-B.A.: Pairwise quantum correlations of a three-qubit XY chain with phase decoherence. Quantum Inf. Process. 12, 1141 (2013)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Ramzan, M.: Quantum discord amplification of fermionic systems in an accelerated frame. Quantum Inf. Process. 13, 259 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    Mohamed, A.-B.A., Joshi, A., Hassan, S.S.: Bipartite non-local correlations in a double-quantum-dot excitonic system. J. Phys. A Math. Theor. 47, 335301 (2014)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Zhanga, G.-F., Ji, A.-L., Fan, H., Liu, W.-M.: Quantum correlation dynamics of two qubits in noisy environments The factorization law and beyond. Ann. Phys. 327, 2074 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    Mohamed, A.-B.A.: Measurement-induced nonlocality and geometric quantum discord in two SC-charge qubits. Optik 124, 5369 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    Mohamed, A.-B.A., Metwally, N.: Non-classical correlations based on skew information for an entangled two qubit-system with non-mutual interaction under intrinsic decoherence. Ann. Phys. 381, 137 (2017)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Mohamed, A.-B.A.: Thermal effect on the generated quantum correlation between two superconducting qubits. Laser Phys. Lett. 13, 085202 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    Debarba, T., Maciel, T.O., Vianna, R.O.: Witnessed entanglement and the geometric measure of quantum discord. Phys. Rev. A 86, 024302 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    Spehner, D., Orszag, M.: Geometric quantum discord with Bures distance. New J. Phys. 15, 103001 (2013)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Solano, E., Agarwal, G.S., Walther, H.: Strong-driving-assisted multipartite entanglement in cavity QED. Phys. Rev. Lett. 90, 027903 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    Mohamed, A.-B.A.: Bipartite non classical correlations for a lossy two connected qubit cavity systems: trace distance discord and Bell’s non-locality. Quantum Inf. Process 17, 96 (2018)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Mohamed, A.-B.A., Eleuch, H.: Generation and robustness of bipartite non-classical correlations in two nonlinear microcavities coupled by an optical fiber. J. Opt. Soc. Am. B 35, 47 (2018)ADSCrossRefGoogle Scholar
  29. 29.
    Blatt, R., Wineland, D.J.: Entangled states of trapped atomic ions. Nature 453, 1008 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    Raimond, J.M., Brune, M., Haroche, S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565 (2001)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Armour, A.D., Blencowe, M.P., Schwab, K.C.: Entanglement and decoherence of a micromechanical resonator via coupling to a Cooper-pair box. Phys. Rev. Lett. 88, 148301 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    Wallraff, A., Schuster, D.I., Blais, A., Frunzio, L., Huang, R.-S., Majer, J., Kumar, S., Girvin, S.M., Schoelkopf, R.J.: Circuit quantum electrodynamics Coherent coupling of a single photon to a Cooper pair box. Nature 431, 162 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    Yin, Z., Li, T., Zhang, X., Duan, L.M.: Large quantum superpositions of a levitated nanodiamond through spin-optomechanical coupling. Phys. Rev. A 88, 033614 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    Buck, B., Sukumar, C.V.: Exactly soluble model of atom-phonon coupling showing periodic decay and revival. Phys. Lett. A 81, 132 (1981)ADSCrossRefGoogle Scholar
  35. 35.
    You, J.Q., Nori, F.: Cooper-pair box qubits in a quantum electrodynamic cavity. Phys. E 18, 33 (2003)CrossRefGoogle Scholar
  36. 36.
    You, J.Q., Nori, F.: Quantum information processing with superconducting qubits in a microwave field. Phys. Rev. B 68, 064509 (2003)ADSCrossRefGoogle Scholar
  37. 37.
    Berrada, K., Al-Rajhi, M.A.: Information quantifiers, entropy squeezing and entanglement properties of superconducting qubit deformed bosonic field system under dephasing effect. Quantum Inf. Process 16, 239 (2017)ADSCrossRefGoogle Scholar
  38. 38.
    Cui, W., Xi, Z.R., Pan, Y.: Non-Markovian entanglement dynamics in coupled superconducting qubit systems. Eur. Phys. J. D 59, 479 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    Mohamed, A.-B.A.: Non-local correlations via Wigner–Yanase skew information in two SC-qubit having mutual interaction under phase decoherence. Eur. Phys. J. D 71, 261 (2017)ADSCrossRefGoogle Scholar
  40. 40.
    Mohamed, A.-B.A.: Geometric measure of nonlocality and quantum discord of two charge qubits with phase decoherence and dipole–dipole interaction. Rep. Math. Phys. 72, 121 (2013)ADSCrossRefGoogle Scholar
  41. 41.
    Ikram, M., Li, F.L., Zubairy, M.S.: Disentanglement in a two-qubit system subjected to dissipation environments. Phys. Rev. A 75, 062336 (2007)ADSCrossRefGoogle Scholar
  42. 42.
    Metwally, N.: Information loss in local dissipation environments. Int. J. Theor. Phys. 49, 1571 (2010)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)ADSCrossRefGoogle Scholar
  44. 44.
    Mohamed, A.-B.A., Hessian, H.A., Obada, A.-S.F.: Entanglement sudden death of a SC-qubit strongly coupled with a quantized mode of a lossy cavity. Phys. A 390, 519 (2011)CrossRefGoogle Scholar
  45. 45.
    Metwally, N.: Enhancing entanglement, local and non-local information of accelerated two-qubit and two-qutrit systems via weak-reverse measurements. EPL 116, 60006 (2016)ADSCrossRefGoogle Scholar
  46. 46.
    Guo, J.-L., Song, H.-S.: Entanglement between two Tavis–Cummings atoms with phase decoherence. J. Mod. Opt. 56, 496 (2009)ADSCrossRefGoogle Scholar
  47. 47.
    Zheng, L., Zhang, G.-F.: Intrinsic decoherence in Jaynes–Cummings model with Heisenberg exchange interaction. Eur. Phys. J. D 71, 288 (2017)ADSCrossRefGoogle Scholar
  48. 48.
    Jaynes, E.T., Cummings, F.W.: Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51, 89 (1963)CrossRefGoogle Scholar
  49. 49.
    Rabi, I.I.: On the process of space quantization. Phys. Rev. 49, 324 (1936)ADSCrossRefGoogle Scholar
  50. 50.
    Rabi, I.I.: On the process of space quantization. Phys. Rev. 51, 652 (1937)ADSCrossRefGoogle Scholar
  51. 51.
    Zhang, J.-Q., Xiong, W., Zhang, S., Li, Y., Feng, M.: Generating the Schrodinger cat state in a nanomechanical resonator coupled to a charge qubit. Ann. Phys. 527, 180 (2015)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Johansson, J., Saito, S., Meno, T., Nakano, H., Ueda, M., Semba, K., Takayanagi, H.: Vacuum rabi oscillations in a macroscopic superconducting qubit LC oscillator system. Phys. Rev. Lett. 96, 127006 (2006)ADSCrossRefGoogle Scholar
  53. 53.
    Metwally, N., Abdulla, M.S., Abdel-Aty, M.: Enhancement non classical properties of a pair of qubit via deformed operators. Int. J. Theor. Phys. 49, 2051 (2010)MathSciNetCrossRefGoogle Scholar
  54. 54.
    Metwally, N.: Dynamics of information in the presence of deformation. I. J. Quantum Inf. 9, 937 (2011)CrossRefGoogle Scholar
  55. 55.
    Milburn, G.J.: Intrinsic decoherence in quantum mechanics. Phys. Rev. A 44, 5401 (1991)ADSMathSciNetCrossRefGoogle Scholar
  56. 56.
    Barut, A.O., Girardello, L.: New coherent states associated with non-compact groups. Commun. Math. Phys. 21, 41 (1971)ADSMathSciNetCrossRefGoogle Scholar
  57. 57.
    Hu, M.-L., Fan, H.: Evolution equation for geometric quantum correlation measures. Phys. Rev. A 91, 052311 (2015)ADSCrossRefGoogle Scholar
  58. 58.
    Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of SciencePrince Sattam Bin Abdulaziz UniversityAl-AflajSaudi Arabia
  2. 2.Faculty of ScienceAssiut UniversityAssiutEgypt
  3. 3.Mathematics Department, College of ScienceAswan UniversityAswanEgypt
  4. 4.Mathematics Department, College of ScienceBahrain UniversityZallaqBahrain

Personalised recommendations