Advertisement

Constructions of new entanglement-assisted quantum MDS and almost MDS codes

  • Jianfa QianEmail author
  • Lina Zhang
Article
  • 27 Downloads

Abstract

In this work, we construct new entanglement-assisted quantum MDS codes with length \(n=q^2+1\). We also construct new entanglement-assisted quantum almost MDS codes with length \(n=q^4-1\). Most of entanglement-assisted quantum MDS and almost MDS codes presented here are new in the sense that their parameters are different from all the previously known ones.

Keywords

Cyclic code Entanglement-assisted quantum code MDS code 

Notes

Acknowledgements

We are indebted to the anonymous referees for their valuable comments and suggestions that helped to improve significantly the quality of this paper. This work was supported by the Characteristic Innovation Project of Guangdong Provincial Department of Education (2017KTSCX173), Foundation for Professor and Doctoral of Huizhou University (2016JB005) and Natural Science Foundation of Guangdong Province (2018A030313879).

References

  1. 1.
    Bowen, G.: Entanglement required in achieving entanglement-assisted channel capacities. Phys. Rev. A 66, 052313 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    Brun, T.A., Devetak, I., Hsieh, M.H.: Correcting quantum errors with entanglement. Science 314(5798), 436–439 (2006)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Hsieh, M.H., Devetak, I., Brun, T.A.: General entanglement-assisted quantum error-correcting codes. Phys. Rev. A 76, 062313 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    Wilde, M.M., Brun, T.A.: Optimal entanglement formulas for entanglement-assisted quantum coding. Phys. Rev. A 77, 064302 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    Hsieh, M.H., Brun, T.A., Devetak, I.: Entanglement-assisted quantum quasi-cyclic low-density parity-check codes. Phys. Rev. A 79, 032340 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    Fujiwara, Y., Clark, D., Vandendriessche, P., Boeck, M.D., Tonchev, V.D.: Entanglement-assisted quantum low-density parity-check codes. Phys. Rev. A 82, 042338 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    Hsieh, M.H., Yen, W.T., Hsu, L.Y.: High performance entanglement-assisted quantum LDPC codes need little entanglement. IEEE Trans. Inf. Theory 57, 1761–1769 (2011)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Shin, J., Heo, J., Brun, T.A.: Entanglement-assisted codeword stabilized quantum codes. Phys. Rev. A 84, 062321 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    Lai, C.Y., Brun, T.A.: Entanglement-assisted quantum error-correcting codes with imperfect ebits. Phys. Rev. A 86, 032319 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    Lai, C.Y., Brun, T.A., Wilde, M.M.: Duality in entanglement-assisted quantum error correction. IEEE Trans. Inf. Theory 59, 4020–4024 (2013)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Guo, L., Li, R.: Linear plotkin bound for entanglement-assisted quantum codes. Phys. Rev. A 87, 032309 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    Li, R., Li, X., Guo, L.: On entanglement-assisted quantum codes achieving the entanglement-assisted Griesmer bound. Quantum Inf. Process. 14, 4427–4447 (2015)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Qian, J., Zhang, L.: Entanglement-assisted quantum codes from arbitrary binary linear codes. Des. Codes Cryptogr. 77, 193–202 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Liu, X., Liu, H., Yu, L.: Entanglement-assisted quantum codes from Galois LCD codes. arXiv:1809.00568 (2018)
  15. 15.
    Liu, X., Yu, L., Hu, P.: New entanglement-assisted quantum codes from \(k\)-Galois dual codes. Finite Fields Appl. 55, 21–32 (2019)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Fan, J., Chen, H., Xu, J.: Construction of \(q\)-ary entanglement-assisted quantum MDS codes with minimum distance greater than \(q + 1\). Quantum Inf. Comput. 16, 423–434 (2016)MathSciNetGoogle Scholar
  17. 17.
    Guenda, K., Jitman, S., Gulliver, T.A.: Constructions of good entanglement-assisted quantum error correcting codes. Des. Codes Cryptogr. 86, 121–136 (2018)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Chen, J., Huang, Y., Feng, C., Chen, R.: Entanglement-assisted quantum MDS codes constructed from negacyclic codes. Quantum Inf. Process. 16(303), 1–22 (2017)ADSMathSciNetzbMATHGoogle Scholar
  19. 19.
    Chen, X., Zhu, S., Kai, X.: Entanglement-assisted quantum MDS codes constructed from constacyclic codes. Quantum Inf. Process. (2018).  https://doi.org/10.1007/s11128-018-2044-1
  20. 20.
    Lu, L., Ma, W., Li, R., Ma, Y., Liu, Y., Cao, H.: Entanglement-assisted quantum MDS codes from constacyclic codes with large minimum distance. arXiv:1803.04168 (2018)
  21. 21.
    Lu, L., Li, R., Guo, L., Ma, Y., Liu, Y.: Entanglement-assisted quantum MDS codes from negacyclic codes. Quantum Inf. Process. (2018).  https://doi.org/10.1007/s11128-018-1838-5
  22. 22.
    Liu, Y., Li, R., Lv, L., Ma, Y.: Application of constacyclic codes to entanglement-assisted quantum maximum distance separable codes. Quantum Inf. Process. (2018).  https://doi.org/10.1007/s11128-018-1978-7
  23. 23.
    Qian, J., Zhang, L.: On MDS linear complementary dual codes and entanglement-assisted quantum codes. Des. Codes Cryptogr. 86, 1565–1572 (2018)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Koroglu, M.E.: New entanglement-assisted MDS quantum codes from constacyclic codes. arXiv:1810.01685 (2018)
  25. 25.
    Guenda, K., Gulliver, T.A., Jitman, S., Thipworawimon, S.: Linear \(l-\)intersection pairs of codes and their applications. arXiv:1810.05103 (2018)
  26. 26.
    Luo, G., Cao, X.: MDS codes with arbitrary dimensional hull and their applications. arXiv:1807.03166 (2018)
  27. 27.
    MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error Correcting Codes. North-Holland, Amsterdam (1977)zbMATHGoogle Scholar
  28. 28.
    Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  29. 29.
    De Boer, M.A.: Almost MDS codes. Des. Codes Cryptogr. 9, 143–155 (1996)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Li, R., Xu, G., Lu, L.: Decomposition of defining sets of BCH codes and its applications. J. Air Force Eng. Univ. (Nat. Sci. Ed.) 14(2), 86–89 (2013). (in Chinese) Google Scholar
  31. 31.
    Lu, L., Li, R.: Entanglement-assisted quantum codes constructed from primitive quaternary BCH codes. Int. J. Quantum Inf. 12(3), 1450015 (2014)MathSciNetCrossRefGoogle Scholar
  32. 32.
    La Guardia, G.G.: Constructions of new families of nonbinary quantum codes. Phys. Rev. A 80, 042331 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    Kai, X., Zhu, S., Li, P.: A construction of new MDS symbol-pair codes. IEEE Trans. Inf. Theory 61, 5828–5834 (2015)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Chen, B., Lin, L., Liu, H.: Constacyclic symbol-pair codes: lower bounds and optimal constructions. IEEE Trans. Inf. Theory 63, 7661–7666 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mathematics and Big DataHuizhou UniversityHuizhouPeople’s Republic of China

Personalised recommendations