Advertisement

Entropic uncertainty relations in the spin-1 Heisenberg model

  • Wei-Nan Shi
  • Fei Ming
  • Dong WangEmail author
  • Liu Ye
Article
  • 37 Downloads

Abstract

The uncertainty relations build an intrinsic lower bound to the measurement precision for arbitrary two incompatible observables and hence deemed as a backbone in quantum theory, strikingly distinguishing from classical physics. In this work, we examine the quantum-memory-assisted entropic uncertainty relations (QMA-EUR) in two-qutrit spin-1 Heisenberg XYZ and XXX chains under homogeneous magnetic fields, respectively. We specifically derive the dynamical evolution of QMA-EUR for various incompatible measurements on Pauli operators (mutually unbiased bases) and SU(3) generators in the Heisenberg XXX and XYZ models when spin A is the object to be measured and B is served as quantum memory during information processing. Notably, it has been found in the case of mutual unbiased-base measurements that, firstly, the larger coupling strength J between A and B can induce the degradation of the measurement’s uncertainty; secondly, the entropic uncertainty is extremely dependent on the coupling strength and the external magnetic field, which would bring the uncertainty on the inflation. In addition, we unveil the dynamical behaviors of the uncertainty measured on SU(3) generators, and it proves that the uncertainty’s dynamics are subtly different from those in the former. Moreover, we explore the relationship between the entropic uncertainty and the system’s entanglement (negativity) and declare that the dynamics of the entropic uncertainty of interest are approximately anti-correlated with that of negativity. At last, the entanglement’s dynamics of the probed system in the XXX and XYZ models are revealed and analyzed by means of negativity, respectively. Hence, our observations might pave the way to understand the dynamical traits of the entropic uncertainty during measurement-based information processing.

Keywords

Entropic uncertainty relations Spin-1 Heisenberg model Negativity Quantum memory 

Notes

Acknowledgements

This work was supported by the National Science Foundation of China under Grant Nos. 61601002 and 11575001, Anhui Provincial Natural Science Foundation (Grant No. 1508085QF139) and the fund from CAS Key Laboratory of Quantum Information (Grant No. KQI201701).

References

  1. 1.
    Heisenberg, W.: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 43, 172 (1927)ADSCrossRefGoogle Scholar
  2. 2.
    Robertson, H.P.: Violation of Heisenberg’s uncertainty principle. Phys. Rev. 34, 163 (1929)ADSCrossRefGoogle Scholar
  3. 3.
    Kennard, E.H.: Zur Quantenmechanik einfacher Bewegungstypen. Z. Phys. 44, 326 (1927)ADSCrossRefGoogle Scholar
  4. 4.
    Deutsch, D.: Uncertainty in quantum measurements. Phys. Rev. Lett. 50, 631 (1983)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Kraus, K.: Complementary observables and uncertainty relations. Phys. Rev. D 35, 3070 (1987)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Maassen, H., Uffink, J.B.M.: Generalized entropic uncertainty relations. Phys. Rev. Lett. 60, 1103 (1988)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Rastegin, A.E.: Entropic uncertainty relations for successive measurements of canonically conjugate observables. Ann. Phys. (Berlin) 528, 835–844 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    Renes, J.M., Boileau, J.C.: Conjectured strong complementary information tradeoff. Phys. Rev. Lett. 103, 020402 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    Berta, M., Christandl, M., Colbeck, R., Renes, J.M., Renner, R.: The uncertainty principle in the presence of quantum memory. Nat. Phys. 6, 659 (2010)CrossRefGoogle Scholar
  10. 10.
    Prevedel, R., Hamel, D.R., Colbeck, R., Fisher, K., Resch, K.J.: Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement. Nat. Phys. 7, 757 (2011)CrossRefGoogle Scholar
  11. 11.
    Li, C.F., Xu, J.S., Xu, X.Y., Li, K., Guo, G.C.: Experimental investigation of the entanglement-assisted entropic uncertainty principle. Nat. Phys. 7, 752 (2011)CrossRefGoogle Scholar
  12. 12.
    Nielson, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2002)Google Scholar
  13. 13.
    Tomamichel, M., Renner, R.: Uncertainty relation for smooth entropies. Phys. Rev. Lett. 106, 110506 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    Coles, P.J., Colbeck, R., Yu, Y., Zwolak, M.: Uncertainty relations from simple entropic properties. Phys. Rev. Lett. 108, 210405 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    Zhang, J., Zhang, Y., Yu, C.S.: Rényi entropy uncertainty relation for successive projective measurements. Quantum Inf. Process. 14, 2239 (2015)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Pati, A.K., Wilde, M.M., Devi, A.R.U., Rajagopal, A.K., Sudha: Quantum discord and classical correlation can tighten the uncertainty principle in the presence of quantum memory. Phys. Rev. A 86, 042105 (2012)Google Scholar
  17. 17.
    Coles, P.J., Piani, M.: Improved entropic uncertainty relations and information exclusion relations. Phys. Rev. A 89, 022112 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    Adabi, F., Salimi, S., Haseli, S.: Tightening the entropic uncertainty bound in the presence of quantum memory. Phys. Rev. A 93, 062123 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    Pramanik, T., Mal, S., Majumdar, A.S.: Lower bound of quantum uncertainty from extractable classical information. Quantum Inf. Process. 15, 981–999 (2016)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Hu, M.L., Fan, H.: Quantum-memory-assisted entropic uncertainty principle, teleportation, and entanglement witness in structured reservoirs. Phys. Rev. A 86, 032338 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    Hu, M.L., Fan, H.: Competitions between quantum correlations in the quantum-memory-assisted entropic uncertainty relation. Phys. Rev. A 87, 022314 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    Hu, M.L., Fan, H.: Upper bound and shareability of quantum discord based on entropic uncertainty relations. Phys. Rev. A 88, 014105 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    Zhang, J., Zhang, Y., Yu, C.S.: Entropic uncertainty relation and information exclusion relation for multiple measurements in the presence of quantum memory. Sci. Rep. 5, 11701 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    Liu, S., Mu, L.Z., Fan, H.: Entropic uncertainty relations for multiple measurements. Phys. Rev. A 91, 042133 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    Adabi, F., Haseli, S., Salimi, S.: Reducing the entropic uncertainty lower bound in the presence of quantum memory via LOCC. EPL 115, 60004 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    Rastegin, A.E., Zyczkowski, K.: Majorization entropic uncertainty relations for quantum operations. J. Phys. A Math. Theor. 49, 355301 (2016)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Wang, D., Huang, A.J., Ming, F., Sun, W.Y., Shi, J.D., Ye, L.: Entropic uncertainty relations for Markovian and non-Markovian processes under a structured bosonic reservoir. Sci. Rep. 7, 1066 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    Baek, K., Son, W.: Unsharpness of generalized measurement and its effects in entropic uncertainty relations. Sci. Rep. 6, 30228 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    Berta, M., Wehner, S., Wilde, M.M.: Entropic uncertainty and measurement reversibility. New J. Phys. 18, 073004 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    Wang, D., Ming, F., Huang, A.J., Sun, W.Y., Shi, J.D., Ye, L.: Exploration of quantum-memory-assisted entropic uncertainty relations in a noninertial frame. Laser Phys. Lett. 14, 055205 (2017)ADSCrossRefGoogle Scholar
  31. 31.
    Huang, A.J., Shi, J.D., Wang, D., Ye, L.: Steering quantum-memory-assisted entropic uncertainty under unital and nonunital noises via filtering operations. Quantum Inf. Process. 16, 46 (2017)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Wang, D., Shi, W.N., Hoehn, R.D., Ming, F., Sun, W.Y., Kais, S., Ye, L.: Effects of Hawking radiation on the entropic uncertainty in a Schwarzschild space-time. Ann. Phys. (Berlin) 530, 1800080 (2018)ADSCrossRefGoogle Scholar
  33. 33.
    Xu, Z.Y., Yang, W.L., Feng, M.: Quantum-memory-assisted entropic uncertainty relation under noise. Phys. Rev. A 86, 012113 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    Zou, H.M., Fang, M.F., Yang, B.Y., Guo, Y.N., He, W., Zhang, S.Y.: The quantum entropic uncertainty relation and entanglement witness in the two-atom system coupling with the non-Markovian environments. Phys. Scr. 89, 115101 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    Feng, J., Zhang, Y.Z., Gould, M.D., Fan, H.: Entropic uncertainty relations under the relativistic motion. Phys. Lett. B 726, 527 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    Jia, L.J., Tian, Z.H., Jing, J.L.: Entropic uncertainty relation in de Sitter space. Ann. Phys. 353, 37 (2015)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Zhang, Y.L., Fang, M.F., Kang, G.D., Zhou, Q.P.: Controlling quantum memory-assisted entropic uncertainty in non-Markovian environments. Quantum Inf. Process. 17, 62 (2018)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    Zhang, Z.Y., Liu, J.M., Hu, Z.H., Wang, Y.Z.: Entropic uncertainty relation for Dirac particles in Garfinkle–Horowitz–Strominger dilation space-time. Ann. Phys. (Berlin).  https://doi.org/10.1002/andp.201800208 (2018)
  39. 39.
    Huang, Z.M.: Dynamics of entropic uncertainty for atoms immersed in thermal fluctuating massless scalar field. Quantum Inf. Process. 17, 73 (2018)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    Dupuis, F., Fawzi, O., Wehner, S.: Entanglement sampling and applications. IEEE. Trans. Inf. Theory 61, 1093 (2015)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Koening, R., Wehner, S., Wullschleger, J.: Unconditional security from noisy quantum storage. IEEE. Trans. Inf. Theory 58, 1962–1984 (2012)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Cerf, N.J., Bourennane, M., Karlsson, A., Gisin, N.: Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88, 127902 (2002)ADSCrossRefGoogle Scholar
  43. 43.
    Grosshans, F., Cerf, N.J.: Continuous-variable quantum cryptography is secure against non-Gaussian attacks. Phys. Rev. Lett. 92, 047905 (2004)ADSCrossRefGoogle Scholar
  44. 44.
    Vallone, G., Marangon, D.G., Tomasin, M., Villoresi, P.: Quantum randomness certified by the uncertainty principle. Phys. Rev. A 90, 052327 (2014)ADSCrossRefGoogle Scholar
  45. 45.
    Jarzyna, M., Demkowicz-Dobrzański, R.: True precision limits in quantum metrology. New J. Phys. 17, 013010 (2015)ADSCrossRefGoogle Scholar
  46. 46.
    Zheng, X., Zhang, G.F.: The effects of mixedness and entanglement on the properties of the entropic uncertainty in Heisenberg model with Dzyaloshinski–Moriya interaction. Quantum Inf. Process. 16, 1 (2017)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    Huang, A.J., Wang, D., Shi, J.D., Sun, W.Y., Ye, L.: Exploring entropic uncertainty relation in the Heisenberg XX model with inhomogeneous magnetic field. Quantum Inf. Process. 16, 204 (2017)ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    Wang, D., Huang, A.J., Ming, F., Sun, W.Y., Lu, H.P., Liu, C.C., Ye, L.: Quantum-memory-assisted entropic uncertainty relation in a Heisenberg XYZ chain with an inhomogeneous magnetic field. Laser Phys. Lett. 14, 065203 (2017)ADSCrossRefGoogle Scholar
  49. 49.
    Zhang, Z.Y., Wei, D.X., Liu, J.M.: Entropic uncertainty relation of a two-qutrit Heisenberg spin model in nonuniform magnetic fields and its dynamics under intrinsic decoherence. Laser Phys. Lett. 15, 065207 (2018)ADSCrossRefGoogle Scholar
  50. 50.
    Arfken, G.B., Weber, H.J., Harris, F.E.: Mathematical Methods for Physicists (7th ed.). Academic Press, Cambridge. ISBN 978-0-12-384654-9 (2000)Google Scholar
  51. 51.
    Cheng, T.P., Li, L.F.: Gauge Theory of Elementary Particle Physics. Oxford University Press, Oxford. ISBN 0-19-851961-3 (1983)Google Scholar
  52. 52.
    Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)ADSCrossRefGoogle Scholar
  53. 53.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  54. 54.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)ADSMathSciNetCrossRefGoogle Scholar
  55. 55.
    Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)ADSCrossRefGoogle Scholar
  56. 56.
    Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)ADSMathSciNetCrossRefGoogle Scholar
  57. 57.
    Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Physics and Material ScienceAnhui UniversityHefeiChina

Personalised recommendations