Optimal control methods for quantum gate preparation: a comparative study

  • Bilal RiazEmail author
  • Cong Shuang
  • Shahid Qamar


In this study, optimal control methods for quantum gate preparation are investigated. Quantum computation demands very high fidelity and requires controls to be easily tunable to achieve different computational tasks. Here, NOT and Controlled-NOT gates are prepared using four optimal control approaches on single- and two-qubit spin systems. Techniques we employed and compared are Krotov method, gradient ascent pulse engineering (GRAPE), chopped random basis optimization (CRAB) and gradient optimization of analytic controls (GOAT). For the preparation of NOT gate both unitary and Lindbladian dynamics are considered. From the numerical simulations, it is observed that GOAT achieves better results as compared to Krotov, GRAPE and CRAB, in terms of minimum infidelity, algorithmic simplicity and analyticity.


Quantum control Krotov method GRAPE CRAB GOAT CNOT gate Infidelity Smooth quantum control 



  1. 1.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, 10th edn. Cambridge University Press, Cambridge (2010). zbMATHCrossRefGoogle Scholar
  2. 2.
    Vandersypen, L.M., Chuang, I.L.: NMR techniques for quantum control and computation. Rev. Mod. Phys. 76(4), 1037 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    Rowland, B., Jones, J.A.: Implementing quantum logic gates with gradient ascent pulse engineering: principles and practicalities. Philos. Trans. R. Soc. A 370(1976), 4636 (2012)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Veldhorst, M., Yang, C., Hwang, J., Huang, W., Dehollain, J., Muhonen, J., Simmons, S., Laucht, A., Hudson, F., Itoh, K.M., et al.: A two-qubit logic gate in silicon. Nature 526(7573), 410 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    Zu, C., Wang, W.B., He, L., Zhang, W.G., Dai, C.Y., Wang, F., Duan, L.M.: Experimental realization of universal geometric quantum gates with solid-state spins. Nature 514(7520), 72 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    Shim, Y.P., Tahan, C.: Semiconductor-inspired design principles for superconducting quantum computing. Nat. Commun. 7, 11059 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    DAlessandro, D.: Small time controllability of systems on compact Lie groups and spin angular momentum. J. Math. Phys. 42(9), 4488 (2001)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Albertini, F., D’Alessandro, D.: Notions of controllability for bilinear multilevel quantum systems. IEEE Trans. Autom. Control 48(8), 1399 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Dür, W., Vidal, G., Cirac, J., Linden, N., Popescu, S.: Entanglement capabilities of nonlocal Hamiltonians. Phys. Rev. Lett. 87(13), 137901 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    Kraus, B., Cirac, J.: Optimal creation of entanglement using a two-qubit gate. Phys. Rev. A 63(6), 062309 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52(5), 3457 (1995)ADSCrossRefGoogle Scholar
  12. 12.
    DiVincenzo, D.P., Bacon, D., Kempe, J., Burkard, G., Whaley, K.B.: Universal quantum computation with the exchange interaction. Nature 408(6810), 339 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    Makhlin, Y.: Nonlocal properties of two-qubit gates and mixed states, and the optimization of quantum computations. Quantum Inf. Process. 1(4), 243 (2002)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Zhang, J., Vala, J., Sastry, S., Whaley, K.B.: Geometric theory of nonlocal two-qubit operations. Phys. Rev. A 67(4), 042313 (2003)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Zhang, J., Whaley, K.B.: Generation of quantum logic operations from physical Hamiltonians. Phys. Rev. A 71(5), 052317 (2005)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Galiautdinov, A.: Generation of high-fidelity controlled-NOT logic gates by coupled superconducting qubits. Phys. Rev. A 75(5), 052303 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    Geller, M.R., Pritchett, E.J., Galiautdinov, A., Martinis, J.M.: Quantum logic with weakly coupled qubits. Phys. Rev. A 81(1), 012320 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    Pal, A., Rashba, E.I., Halperin, B.I.: Exact CNOT gates with a single nonlocal rotation for quantum-dot qubits. Phys. Rev. B 92(12), 125409 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    Watts, P., Vala, J., Müller, M.M., Calarco, T., Whaley, K.B., Reich, D.M., Goerz, M.H., Koch, C.P.: Optimizing for an arbitrary perfect entangler. I. Functionals. Phys. Rev. A 91(6), 062306 (2015)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Goerz, M.H., Gualdi, G., Reich, D.M., Koch, C.P., Motzoi, F., Whaley, K.B., Vala, J., Müller, M.M., Montangero, S., Calarco, T.: Optimizing for an arbitrary perfect entangler. II. Application. Phys. Rev. A 91(6), 062307 (2015)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Palao, J.P., Kosloff, R.: Quantum computing by an optimal control algorithm for unitary transformations. Phys. Rev. Lett. 89(18), 188301 (2002). ADSCrossRefGoogle Scholar
  22. 22.
    Palao, J.P., Kosloff, R.: Optimal control theory for unitary transformations. Phys. Rev. A 68(6), 062308 (2003). ADSCrossRefGoogle Scholar
  23. 23.
    Carlini, A., Hosoya, A., Koike, T., Okudaira, Y.: Time-optimal unitary operations. Phys. Rev. A 75(4), 042308 (2007)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Schulte-Herbrüggen, T., Spörl, A., Khaneja, N., Glaser, S.: Optimal control-based efficient synthesis of building blocks of quantum algorithms: A perspective from network complexity towards time complexity. Phys. Rev. A 72(4), 042331 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    Nigmatullin, R., Schirmer, S.: Implementation of fault-tolerant quantum logic gates via optimal control. New J. Phys. 11(10), 105032 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    Schulte-Herbrüggen, T., Spörl, A., Khaneja, N., Glaser, S.: Optimal control for generating quantum gates in open dissipative systems. J. Phys. B Atom. Mol. Opt. Phys. 44(15), 154013 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    Zhou, W., Schirmer, S., Zhang, M., Dai, H.Y.: Bang-bang control design for quantum state transfer based on hyperspherical coordinates and optimal time-energy control. J. Phys. A Math. Theoret. 44(10), 105303 (2011)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Huang, S.Y., Goan, H.S.: Optimal control for fast and high-fidelity quantum gates in coupled superconducting flux qubits. Phys. Rev. A 90(1), 012318 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    Bhole, G., Anjusha, V., Mahesh, T.: Steering quantum dynamics via bang-bang control: implementing optimal fixed-point quantum search algorithm. Phys. Rev. A 93(4), 042339 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    Hirose, M., Cappellaro, P.: Time-optimal control with finite bandwidth. Quantum Inf. Process. 17(4), 88 (2018)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Wen, J., Cong, S.: Preparation of quantum gates for open quantum systems by Lyapunov control method. Open Syst. Inf. Dyn. 23(01), 1650005 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Silveira, H.B., da Silva, P.P., Rouchon, P.: Quantum gate generation for systems with drift in U (n) using Lyapunov–LaSalle techniques. Int. J. Control 89(12), 2466 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Khaneja, N., Reiss, T., Kehlet, C., Schulte-Herbrüggen, T., Glaser, S.J.: Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. J. Magn. Reson. 172(2), 296 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    De Fouquieres, P., Schirmer, S., Glaser, S., Kuprov, I.: Second order gradient ascent pulse engineering. J. Magn. Reson. 212(2), 412 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    Leung, N., Abdelhafez, M., Koch, J., Schuster, D.: Speedup for quantum optimal control from automatic differentiation based on graphics processing units. Phys. Rev. A 95(4), 042318 (2017)ADSCrossRefGoogle Scholar
  36. 36.
    Caneva, T., Calarco, T., Montangero, S.: Chopped random-basis quantum optimization. Phys. Rev. A 84(2), 022326 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    Rach, N., Müller, M.M., Calarco, T., Montangero, S.: Dressing the chopped-random-basis optimization: A bandwidth-limited access to the trap-free landscape. Phys. Rev. A 92(6), 062343 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    Machnes, S., Assémat, E., Tannor, D., Wilhelm, F.K.: Tunable, flexible, and efficient optimization of control pulses for practical qubits. Phys. Rev. Lett. 120(15), 150401 (2018)ADSCrossRefGoogle Scholar
  39. 39.
    Sørensen, J., Aranburu, M., Heinzel, T., Sherson, J.: Quantum optimal control in a chopped basis: applications in control of Bose–Einstein condensates. Phys. Rev. A 98(2), 022119 (2018)ADSCrossRefGoogle Scholar
  40. 40.
    Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48(2), 119 (1976)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17(5), 821 (1976)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    Lendi, K.: Evolution matrix in a coherence vector formulation for quantum Markovian master equations of N-level systems. J. Phys. A Math. Gen. 20(1), 15 (1987)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    d’Alessandro, D.: Introduction to Quantum Control and Dynamics. Chapman and Hall/CRC, New York (2007)zbMATHCrossRefGoogle Scholar
  44. 44.
    Dirr, G., Helmke, U.: Lie theory for quantum control. GAMM-Mitteilungen 31(1), 59 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Koch, C.P.: Controlling open quantum systems: tools, achievements, and limitations. J. Phys. Condens. Matter 28(21), 213001 (2016)ADSCrossRefGoogle Scholar
  46. 46.
    Schirmer, S.G., de Fouquieres, P.: Efficient algorithms for optimal control of quantum dynamics: the Krotov method unencumbered. New J. Phys. 13(7), 073029 (2011)ADSCrossRefGoogle Scholar
  47. 47.
    Boutin, S., Andersen, C.K., Venkatraman, J., Ferris, A.J., Blais, A.: Resonator reset in circuit QED by optimal control for large open quantum systems. Phys. Rev. A 96(4), 042315 (2017)ADSCrossRefGoogle Scholar
  48. 48.
    Machnes, S., Sander, U., Glaser, S., de Fouquieres, P., Gruslys, A., Schirmer, S., Schulte-Herbrüggen, T.: Comparing, optimizing, and benchmarking quantum-control algorithms in a unifying programming framework. Phys. Rev. A 84(2), 022305 (2011)ADSCrossRefGoogle Scholar
  49. 49.
    Ben-Israel, A.: A Newton-Raphson method for the solution of systems of equations. J. Math. Anal. Appl. 15(2), 243 (1966)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, Berlin (2006)zbMATHGoogle Scholar
  51. 51.
    Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7(4), 308 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.E.: Convergence properties of the Nelder–Mead simplex method in low dimensions. SIAM J. Optim. 9(1), 112 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge (2012). CrossRefGoogle Scholar
  54. 54.
    de Fouquieres, P.: Implementing quantum gates by optimal control with doubly exponential convergence. Phys. Rev. Lett. 108(11), 110504 (2012)CrossRefGoogle Scholar
  55. 55.
    Zhu, W., Rabitz, H.: A rapid monotonically convergent iteration algorithm for quantum optimal control over the expectation value of a positive definite operator. J. Chem. Phys. 109(2), 385 (1998)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of AutomationUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations