Two-party quantum key agreement over a collective noisy channel

  • Yu-Guang YangEmail author
  • Shang Gao
  • Dan Li
  • Yi-Hua Zhou
  • Wei-Min Shi


Quantum key agreement (QKA) allows participants to establish a shared key over a quantum channel, and no one of the participants can determine the shared key alone. Actually, particles are usually affected by noise during transmission in the quantum channel, and an aggressor can launch a baleful attack under the cover of noise. In this paper, based on logical Bell states, we propose two robust two-party QKA protocols immune to collective-dephasing noise and collective-rotation noise, respectively. The measurement correlation of quantum entanglement is utilized to establish a shared key. The proposed protocols are globally better in terms of quantum resource cost and qubit efficiency than existing two-party QKA protocols against collective noise. The security analysis demonstrates that they can resist common insider and outsider attacks.


Quantum cryptography Quantum key agreement Collective noise Qubit efficiency 



This work was supported by the National Natural Science Foundation of China (Grant No. 61572053); Beijing Natural Science Foundation (Grant No. 4182006); the National Natural Science Foundation of China (Grant Nos. 61671087, U1636106, 61602019, 61571226, 61701229,61702367); Natural Science Foundation of Jiangsu Province, China (Grant No. BK20170802); Jiangsu postdoctoral science foundation.


  1. 1.
    Bennett, C. H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179. IEEE, New York (1984)Google Scholar
  2. 2.
    Ekert, A.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–664 (1991)ADSMathSciNetzbMATHGoogle Scholar
  3. 3.
    Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)ADSMathSciNetzbMATHGoogle Scholar
  4. 4.
    Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)ADSGoogle Scholar
  5. 5.
    Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)ADSGoogle Scholar
  6. 6.
    Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)ADSMathSciNetzbMATHGoogle Scholar
  7. 7.
    Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999)ADSGoogle Scholar
  8. 8.
    Dušek, M., Haderka, O., Hendrych, M., Myska, R.: Quantum identification system. Phys. Rev. A 60, 149–156 (1999)ADSGoogle Scholar
  9. 9.
    Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A: Math. Theor. 42(5), 055305 (2009)ADSMathSciNetzbMATHGoogle Scholar
  10. 10.
    Yang, Y.G., Cao, W.F., Wen, Q.Y.: Secure quantum private comparison. Phys. Scr. 80(6), 065002 (2009)ADSzbMATHGoogle Scholar
  11. 11.
    Chen, X.B., Xu, G., Niu, X.X., Wen, Q.Y., Yang, Y.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single particle measurement. Opt. Commun. 283(7), 1561–1565 (2010)ADSGoogle Scholar
  12. 12.
    Yang, Y.-G., Liu, Z.-C., Li, J., Chen, X.-B., Zuo, H.-J., Zhou, Y.-H., Shi, W.-M.: Theoretically extensible quantum digital signature with starlike cluster states. Quantum Inf. Process. 16(1), 1–15 (2017)zbMATHGoogle Scholar
  13. 13.
    Yang, Y.-G., Lei, H., Liu, Z.-C., Zhou, Y.-H., Shi, W.-M.: Arbitrated quantum signature scheme based on cluster states. Quantum Inf. Process. 15(6), 2487–2497 (2016)ADSMathSciNetzbMATHGoogle Scholar
  14. 14.
    Jiang, D.-H., Xu, Y.-L., Xu, G.-B.: Arbitrary quantum signature based on local indistinguishability of orthogonal product states. Int. J. Theor. Phys. (2019). MathSciNetCrossRefGoogle Scholar
  15. 15.
    Wang, T.-Y., Cai, X.Q., Ren, Y.L., Zhang, R.L.: Security of quantum digital signature. Sci. Rep. 5, 9231 (2015)Google Scholar
  16. 16.
    Gao, F., Liu, B., Huang, W., Wen, Q.Y.: Postprocessing of the oblivious key in quantum private query. IEEE. J. Sel. Top. Quant. 21, 6600111 (2015)Google Scholar
  17. 17.
    Wei, C.Y., Wang, T.Y., Gao, F.: Practical quantum private query with better performance in resisting joint-measurement attack. Phys. Rev. A 93, 042318 (2016)ADSGoogle Scholar
  18. 18.
    Yang, Y.-G., Liu, Z.-C., Chen, X.-B., Zhou, Y.-H., Shi, W.-M.: Robust QKD-based private database queries based on alternative sequences of single-qubit measurements. Sci. Chin. Phys. Mech. Astron. 60(12), 120311 (2017)ADSGoogle Scholar
  19. 19.
    Yang, Y.-G., Liu, Z.-C., Li, J., Chen, X.-B., Zuo, H.-J., Zhou, Y.-H., Shi, W.-M.: Quantum private query with perfect user privacy against a joint-measurement attack. Phys. Lett. A 380(48), 4033–4038 (2016)ADSzbMATHGoogle Scholar
  20. 20.
    Yang, Y.-G., Liu, Z.C., Chen, X.B., Cao, W.F., Zhou, Y.H., Shi, W.M.: Novel classical post-processing for quantum key distribution-based quantum private query. Quantum Inf. Process. 15, 3833–3840 (2016)ADSMathSciNetzbMATHGoogle Scholar
  21. 21.
    Gao, F., Liu, B., Wen, Q.-Y.: Flexible quantum private queries based on quantum key distribution. Opt. Exp. 20, 17411–17420 (2012)ADSGoogle Scholar
  22. 22.
    Yang, Y.-G., Sun, S.-J., Xu, P., Tian, J.: Flexible protocol for quantum private query based on B92 protocol. Quantum Inf. Process. 13, 805–813 (2014)ADSMathSciNetGoogle Scholar
  23. 23.
    Gao, F., Qin, S.J., Huang, W., Wen, Q.Y.: Quantum private query: a new kind of practical quantum cryptographic protocols. Sci. China-Phys. Mech. Astron. 62, 070301 (2019)Google Scholar
  24. 24.
    Yang, Y.-G., Guo, X.-P., Xu, G., Chen, X.-B., Li, J., Zhou, Y.-H., Shi, W.-M.: Reducing the communication complexity of quantum private database queries by subtle classical post-processing with relaxed quantum ability. Comput. Secur. 81, 15–24 (2019)Google Scholar
  25. 25.
    Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory 22, 644–654 (1976)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40(18), 1149 (2004)Google Scholar
  27. 27.
    Tsai, C.W., Hwang, T.: On quantum key agreement protocol, Technical Report, CS-I-E, NCKU, Taiwan, ROC, 2009Google Scholar
  28. 28.
    Chong, S.K., Hwang, T.: Quantum key agreement protocol based on BB84. Opt. Commun. 283, 1192–1195 (2010)ADSGoogle Scholar
  29. 29.
    He, Y.F., Ma, W.P.: Two-party quantum key agreement with five-particle entangled states. Int. J. Quantum Inf. 15(03), 1750018 (2017)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Cai, B., Guo, G., Lin, S.: Multi-party quantum key agreement with teleportation. Mod. Phys. Lett. B 31(10), 1750102 (2017)ADSMathSciNetGoogle Scholar
  31. 31.
    Cao, H., Ma, W.: Multiparty quantum key agreement based on quantum search algorithm. Sci. Rep. 7, 45046 (2017)ADSGoogle Scholar
  32. 32.
    Shi, R.H., Zhong, H.: Multi-party quantum key agreement with Bell states and Bell measurements. Quantum Inf. Process. 12, 921–932 (2013)ADSMathSciNetzbMATHGoogle Scholar
  33. 33.
    Liu, B., Gao, F., Huang, W., Wen, Q.-Y.: Multiparty quantum key agreement with single particles. Quantum Inf. Process. 12, 1797–1805 (2013)ADSMathSciNetzbMATHGoogle Scholar
  34. 34.
    Xu, G.-B., Wen, Q.-Y., Gao, F., Qin, S.-J.: Novel multiparty quantum key agreement protocol with GHZ states. Quantum Inf. Process. 13, 2587–2594 (2014)ADSMathSciNetzbMATHGoogle Scholar
  35. 35.
    Shukla, C., Alam, N., Pathak, A.: Protocols of quantum key agreement solely using Bell states and Bell measurement. Quantum Inf. Process. 13, 2391–2405 (2014)ADSMathSciNetzbMATHGoogle Scholar
  36. 36.
    Sun, Z.W., Yu, J.P., Wang, P.: Efficient multi-party quantum key agreement by cluster States. Quantum Inf. Process. 15, 373–384 (2016)ADSMathSciNetzbMATHGoogle Scholar
  37. 37.
    He, Y.-F., Ma, W.-P.: Quantum key agreement protocols with four-qubit cluster states. Quantum Inf. Process. 14, 3483–3498 (2015)ADSMathSciNetzbMATHGoogle Scholar
  38. 38.
    Sun, Z.W., Zhang, C., Wang, P., Yu, J.P., Zhang, Y., Long, D.Y.: Multi-party quantum key agreement by an entangled six-qubit state. Int. J. Theor. Phys. 55, 1920–1929 (2016)zbMATHGoogle Scholar
  39. 39.
    Huang, W., Wen, Q.-Y., Liu, B., Su, Q., Gao, F.: Cryptanalysis of a multi-party quantum key agreement protocol with single particles. Quantum Inf. Process. 13, 1651–1657 (2014)ADSMathSciNetGoogle Scholar
  40. 40.
    Huang, W., Su, Q., Xu, B.J., Liu, B., Fan, F., Jia, H.Y., Yang, Y.H.: Improved multiparty quantum key agreement in travelling mode. Sci. Chin. Phys. Mech. Astron. 59(12), 120311 (2016)Google Scholar
  41. 41.
    Sun, Z.W., Zhang, C., Wang, B.H., Li, Q., Long, D.Y.: Improvements on “multiparty quantum key agreement with single particles”. Quantum Inf. Process. 12, 3411–3420 (2013)ADSMathSciNetzbMATHGoogle Scholar
  42. 42.
    Kwiat, P.G., Berglund, A.J., Altepeter, J.B., White, A.G.: Experimental verification of decoherence-free subspaces. Science (New York N.Y.) 290(5491), 498–501 (2000)ADSGoogle Scholar
  43. 43.
    Cai, B., Guo, G., Lin, S., Zuo, H., Yu, C.: Multipartite quantum key agreement over collective noise channels. IEEE Photonics J. 10(1), 1–11 (2018)Google Scholar
  44. 44.
    Huang, W., Wen, Q.Y., Liu, B., Gao, F., Sun, Y.: Quantum key agreement with EPR pairs and single particle measurements. Quantum Inf. Process. 13, 649–663 (2014)ADSMathSciNetzbMATHGoogle Scholar
  45. 45.
    Huang, W., Su, Q., Wu, X., Li, Y.B., Sun, Y.: Quantum key agreement against collective decoherence. Int. J. Theor. Phys. 53, 2891 (2014)zbMATHGoogle Scholar
  46. 46.
    He, Y.F., Ma, W.P.: Two-party quantum key agreement against collective noise. Quantum Inf. Process. 15, 5023–5035 (2016)ADSMathSciNetzbMATHGoogle Scholar
  47. 47.
    He, Y.-F., Ma, W.-P.: Two quantum key agreement protocols immune to collective noise. Int. J. Theor. Phys. 56, 328–338 (2017)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Gao, H., Chen, X.G., Qian, S.R.: Two-party quantum key agreement protocols under collective noise channel. Quantum Inf. Process. 17, 140 (2018)ADSMathSciNetzbMATHGoogle Scholar
  49. 49.
    Gisin, N., Fasel, S., Kraus, B., Zbinden, H., Ribordy, G.: Trojan-horse attacks on quantum-key distribution systems. Phys. Rev. A 73, 022320 (2006)ADSGoogle Scholar
  50. 50.
    Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351, 23–25 (2006)ADSzbMATHGoogle Scholar
  51. 51.
    Vakhitov, A., Makarov, V., Hjelme, D.R.: Large pulse attack as a method of conventional optical eavesdropping in quantum cryptography. J. Mod. Opt. 48, 2023–2038 (2001)ADSzbMATHGoogle Scholar
  52. 52.
    Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)ADSGoogle Scholar
  53. 53.
    Deng, F.G., Zhou, P., Li, X.H., et al.: Robustness of two-way quantum communication protocols against Trojan horse attack. arXiv:quant-ph/0508168
  54. 54.
    Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: A simple participant attack on the Brádler–Dušek protocol. Quantum Inf. Comput. 7, 329–334 (2007)MathSciNetzbMATHGoogle Scholar
  55. 55.
    Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Comment on “Experimental demonstration of a quantum protocol for byzantine agreement and liar detectio”. Phys. Rev. Lett. 101, 208901 (2008)ADSGoogle Scholar
  56. 56.
    Qin, S., Gao, F., Wen, Q., Zhu, F.: Improving the security of multiparty quantum secret sharing against an attack with a fake signal. Phys. Lett. A 357, 101–103 (2006)ADSzbMATHGoogle Scholar
  57. 57.
    Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635–5638 (2000)ADSGoogle Scholar
  58. 58.
    Jiang, D.-H., Wang, X.-J., Xu, G.-B., Lin, J.-Q.: A denoising-decomposition model combining TV minimisation and fractional derivatives. East Asia J. Appl. Math. 8, 447–462 (2018)Google Scholar
  59. 59.
    Li, L., Wang, Z., Li, Y.X., Shen, H., Lu, J.W.: Hopf bifurcation analysis of a complex-valued neural network model with discrete and distributed delays. Appl. Math. Comput. 330, 152–169 (2018)MathSciNetGoogle Scholar
  60. 60.
    Liang, X., Gao, F., Zhou, C.-B., Wang, Z., Yang, X.-J.: An anomalous diffusion model based on a new general fractional operator with the Mittag-Leffler function of Wiman type. Adv. Differ. Eqn. 2018, 25 (2018)MathSciNetzbMATHGoogle Scholar
  61. 61.
    Wang, J., Liang, K., Huang, X., Wang, Z., Shen, H.: Dissipative fault-tolerant control for nonlinear singular perturbed systems with Markov jumping parameters based on slow state feedback. Appl. Math. Comput. 328, 247–262 (2018)MathSciNetGoogle Scholar
  62. 62.
    Zhou, J.P., Sang, C.Y., Li, X., Fang, M.Y., Wang, Z.: H∞ consensus for nonlinear stochastic multi-agent systems with time delay. Appl. Math. Comput. 325, 41–58 (2018)MathSciNetGoogle Scholar
  63. 63.
    Hu, Q.Y., Yuan, L.: A plane wave method combined with local spectral elements for nonhomogeneous Helmholtz equation and time-harmonic Maxwell equations. Adv. Comput. Math. 44(1), 245–275 (2018)MathSciNetzbMATHGoogle Scholar
  64. 64.
    Liu, F.: Rough maximal functions supported by subvarieties on Triebel-Lizorkin spaces, Revista de la Real Academia de Ciencias Exactas. Fisicas y Naturales. Serie A. Math. 112(2), 593–614 (2018)Google Scholar
  65. 65.
    Wang, W., Zhang, T.Q.: Caspase-1-mediated pyroptosis of the predominance for driving CD4++ T cells death: a nonlocal spatial mathematical model. Bull. Math. Biol. 80(3), 540–582 (2018)MathSciNetzbMATHGoogle Scholar
  66. 66.
    Li, H.J., Zhu, Y.L., Liu, J., Wang, Y.: Consensus of second-order delayed nonlinear multi-agent systems via node-based distributed adaptive completely intermittent protocols. Appl. Math. Comput. 326, 1–15 (2018)MathSciNetGoogle Scholar
  67. 67.
    Cui, Y.J., Ma, W.J., Sun, Q., Su, X.W.: New uniqueness results for boundary value problem of fractional differential equation. Nonlinear Anal. Model. Control 23(1), 31–39 (2018)MathSciNetGoogle Scholar
  68. 68.
    Cui, Y.J., Ma, W.J., Wang, X.Z., Su, X.W.: Uniqueness theorem of differential system with coupled integral boundary conditions. Electron. J. Qual. Theory Differ. Equ. 9, 1–10 (2018)MathSciNetzbMATHGoogle Scholar
  69. 69.
    Ma, W.-X.: Conservation laws by symmetries and adjoint symmetries. Discrete. Contin. Dyn. Syst. Ser. S 11(4), 707–721 (2018)MathSciNetzbMATHGoogle Scholar
  70. 70.
    Ma, W.-X., Yong, X.L., Zhang, H.-Q.: Diversity of interaction solutions to the (2+1)-dimensional Ito equation. Comput. Math. Appl. 75(1), 289–295 (2018)MathSciNetGoogle Scholar
  71. 71.
    Ma, W.-X., Zhou, Y.: Lump solutions to nonlinear partial differential equations via Hirota bilinear forms. J. Differ. Equ. 264(4), 2633–2659 (2018)ADSMathSciNetzbMATHGoogle Scholar
  72. 72.
    McAnally, M., Ma, W.-X.: An integrable generalization of the D-Kaup–Newell soliton hierarchy and its bi-Hamiltonian reduced hierarchy. Appl. Math. Comput. 323, 220–227 (2018)MathSciNetGoogle Scholar
  73. 73.
    Lu, C.N., Fu, C., Yang, H.W.: Time-fractional generalized boussinesq equation for rossby solitary waves with dissipation effect in stratified fluid and conservation laws as well as exact solutions. Appl. Math. Comput. 327, 104–116 (2018)MathSciNetGoogle Scholar
  74. 74.
    Liu, F.: Continuity and approximate differentiability of multisublinear fractional maximal functions. Math. Inequal. Appl. 21(1), 25–40 (2018)MathSciNetzbMATHGoogle Scholar
  75. 75.
    Wang, J., Cheng, H., Li, Y., et al.: The geometrical analysis of a predator-prey model with multi-state dependent impulsive. J. Appl. Anal. Comput. 8(2), 427–442 (2018)MathSciNetGoogle Scholar
  76. 76.
    Chen, J., Zhang, T., Zhang, Z.Y., Lin, C., Chen, B.: Stability and output feedback control for singular Markovian jump delayed systems. Math. Control Relat. Fields 8(2), 475–490 (2018)MathSciNetGoogle Scholar
  77. 77.
    Xu, X.-X., Sun, Y.-P.: Two symmetry constraints for a generalized Dirac integrable hierarchy. J. Math. Anal. Appl. 458, 1073–1090 (2018)MathSciNetzbMATHGoogle Scholar
  78. 78.
    Shen, H., Song, X.N., Li, F., Wang, Z., Chen, B.: Finite-time L2-L∞ filter design for networked Markov switched singular systems: a unified method. Appl. Math. Comput. 321(15), 450–462 (2018)MathSciNetGoogle Scholar
  79. 79.
    Wang, Z., Wang, X.H., Li, Y.X., Huang, X.: Stability and Hopf bifurcation of fractional-order complex-valued single neuron model with time delay. Int. J. Bifurc. Chaos 27(13), 1750209 (2017)MathSciNetzbMATHGoogle Scholar
  80. 80.
    Zhang, Y., Dong, H.H., Zhang, X.E., Yang, H.W.: Rational solutions and lump solutions to the generalized (3+1)-dimensional Shallow Water-like equation. Comput. Math. Appl. 73, 246–252 (2017)MathSciNetzbMATHGoogle Scholar
  81. 81.
    Zhang, S.Q., Meng, X.Z., Zhang, T.H.: Dynamics analysis and numerical simulations of a stochastic non-autonomous predator-prey system with impulsive effects. Nonlinear Anal: Hybrid Syst. 26, 19–37 (2017)MathSciNetzbMATHGoogle Scholar
  82. 82.
    Zhang, R.Y., Xu, F.F., Huang, J.C.: Reconstructing local volatility using total variation. Acta Math. Sin.-English Ser. 33(2), 263–277 (2017)MathSciNetzbMATHGoogle Scholar
  83. 83.
    Liu, F.: A remark on the regularity of the discrete maximal operator. Bull. Aust. Math. Soc. 95, 108–120 (2017)MathSciNetzbMATHGoogle Scholar
  84. 84.
    Liu, F.: Integral operators of Marcinkiewicz type on Triebel-Lizorkin spaces. Math. Nachr. 290, 75–96 (2017)MathSciNetzbMATHGoogle Scholar
  85. 85.
    Tian, Z.L., Tian, M.Y., Liu, Z.Y., Xu, T.Y.: The Jacobi and Gauss-Seidel-type iteration methods for the matrix equation AXB = C. Appl. Math. Comput. 292, 63–75 (2017)MathSciNetGoogle Scholar
  86. 86.
    Song, Q.L., Dong, X.Y., Bai, Z.B., Chen, B.: Existence for fractional Dirichlet boundary value problem under barrier strip conditions. J. Nonlinear Sci. Appl. 10, 3592–3598 (2017)MathSciNetGoogle Scholar
  87. 87.
    Liu, F., Wu, H.X.: On the regularity of maximal operators supported by submanifolds. J. Math. Anal. Appl. 453, 144–158 (2017)MathSciNetzbMATHGoogle Scholar
  88. 88.
    Liu, F., Wu, H.X.: Regularity of discrete multisublinear fractional maximal functions. Sci. China Math. 60(8), 1461–1476 (2017)MathSciNetzbMATHGoogle Scholar
  89. 89.
    Liu, F., Wu, H.X.: Endpoint regularity of multisublinear fractional maximal functions. Can. Math. Bull. 60(3), 586–603 (2017)MathSciNetzbMATHGoogle Scholar
  90. 90.
    Liu, F., Mao, S.Z.: On the regularity of the one-sided Hardy-Littlewood maximal functions. Czech. Math. J. 67(142), 219–234 (2017)MathSciNetzbMATHGoogle Scholar
  91. 91.
    Liu, F.: On the Triebel-Lizorkin space boundedness of Marcinkiewicz integrals along compound surfaces. Math. Inequal. Appl. 20(2), 515–535 (2017)MathSciNetzbMATHGoogle Scholar
  92. 92.
    Li, X.Y., Zhao, Q.L.: A new integrable symplectic map by the binary nonlinearization to the super AKNS system. J. Geom. Phys. 121, 123–137 (2017)ADSMathSciNetzbMATHGoogle Scholar
  93. 93.
    Cheng, W., Xu, J.F., Cui, Y.J.: Positive solutions for a system of nonlinear semipositone fractional q-difference equations with q-integral boundary conditions. J. Nonlinear Sci. Appl. 10, 4430–4440 (2017)MathSciNetGoogle Scholar
  94. 94.
    Xu, X.-X., Sun, Y.-P.: An integrable coupling hierarchy of Dirac integrable hierarchy, its Liouville integrability and Darboux transformation. J. Nonlinear Sci. Appl. 10, 3328–3343 (2017)MathSciNetGoogle Scholar
  95. 95.
    Liu, Y.Q., Sun, H.G., Yin, X.L., Xin, B.G.: A new Mittag-Leffler function undetermined coefficient method and its applications to fractional homogeneous partial differential equations. J. Nonlinear Sci. Appl. 10, 4515–4523 (2017)MathSciNetGoogle Scholar
  96. 96.
    Chen, J.C., Zhu, S.D.: Residual symmetries and soliton-cnoidal wave interaction solutions for the negative-order Korteweg-de Vries equation. Appl. Math. Lett. 73, 136–142 (2017)MathSciNetzbMATHGoogle Scholar
  97. 97.
    Zhang, X.E., Chen, Y., Zhang, Y.: Breather, lump and X soliton solutions to nonlocal KP equation. Comput. Math. Appl. 74(10), 2341–2347 (2017)MathSciNetzbMATHGoogle Scholar
  98. 98.
    Zhang, J.B., Ma, W.X.: Mixed lump-kink solutions to the BKP equation. Comput. Math. Appl. 74, 591–596 (2017)MathSciNetzbMATHGoogle Scholar
  99. 99.
    Zhao, H.Q., Ma, W.X.: Mixed lump-kink solutions to the KP equation. Comput. Math. Appl. 74, 1399–1405 (2017)MathSciNetzbMATHGoogle Scholar
  100. 100.
    Liu, F., Wu, H.X.: Singular integrals related to homogeneous mappings in Triebel-Lizorkin spaces. J. Math. Inequal. 11(4), 1075–1097 (2017)MathSciNetzbMATHGoogle Scholar
  101. 101.
    Liu, F.: Rough singular integrals associated to surfaces of revolution on Triebel-Lizorkin spaces. Rocky Mt. J. Math. 47(5), 1617–1653 (2017)MathSciNetzbMATHGoogle Scholar
  102. 102.
    Zhao, Q.L., Li, X.Y.: A bargmann system and the involutive solutions associated with a new 4-order lattice hierarchy. Anal. Math. Phys. 6(3), 237–254 (2016)MathSciNetzbMATHGoogle Scholar
  103. 103.
    Wang, Y.H.: Beyond regular semigroups. Semigroup Forum 92(2), 414–448 (2016)MathSciNetzbMATHGoogle Scholar
  104. 104.
    Zhang, J.K., Wu, X.J., Xing, L.S., Zhang, C.: Bifurcation analysis of five-level cascaded H-bridge inverter using proportional-resonant plus time-delayed feedback. Int. J. Bifurc. Chaos 26(11), 1630031 (2016)MathSciNetzbMATHGoogle Scholar
  105. 105.
    Zhang, T.Q., Meng, X.Z., Zhang, T.H.: Global analysis for a delayed siv model with direct and environmental transmissions. J. Appl. Anal. Comput. 6(2), 479–491 (2016)MathSciNetGoogle Scholar
  106. 106.
    Meng, X.Z., Wang, L., Zhang, T.H.: Global dynamics analysis of a nonlinear impulsive stochastic chemostat system in a polluted environment. J. Appl. Anal. Comput. 6(3), 865–875 (2016)MathSciNetGoogle Scholar
  107. 107.
    Cui, Y.J.: Uniqueness of solution for boundary value problems for fractional differential equations. Appl. Math. Lett. 51, 48–54 (2016)MathSciNetzbMATHGoogle Scholar
  108. 108.
    Meng, X.Z., Zhao, S.N., Feng, T., Zhang, T.H.: Dynamics of a novel nonlinear stochastic Sis epidemic model with double epidemic hypothesis. J. Math. Anal. Appl. 433(1), 227–242 (2016)MathSciNetzbMATHGoogle Scholar
  109. 109.
    Yin, C., Cheng, Y.H., Zhong, S.M., Bai, Z.B.: Fractional-order switching type control law design for adaptive sliding mode technique of 3d fractional-order nonlinear systems. Complexity 21(6), 363–373 (2016)MathSciNetGoogle Scholar
  110. 110.
    Liu, F., Mao, S.Z., Wu, H.X.: On rough singular integrals related to homogeneous mappings. Collectanea Math. 67(1), 113–132 (2016)MathSciNetzbMATHGoogle Scholar
  111. 111.
    Liu, F., Chen, T., Wu, H.X.: A note on the endpoint regularity of the Hardy-littlewood maximal functions. Bull. Aust. Math. Soc. 94(1), 121–130 (2016)MathSciNetzbMATHGoogle Scholar
  112. 112.
    Liu, F., Fu, Z.W., Zheng, Y.P., Yuan, Q.: A rough marcinkiewicz integral along smooth curves. J. Nonlinear Sci. Appl. 9(6), 4450–4464 (2016)MathSciNetzbMATHGoogle Scholar
  113. 113.
    Liu, F., Wang, F.: Entropy-expansiveness of geodesic flows on closed manifolds without conjugate points. Acta Math. Sin.-English Ser. 32(4), 507–520 (2016)MathSciNetzbMATHGoogle Scholar
  114. 114.
    Cui, Y.J.: Existence of solutions for coupled integral boundary value problem at resonance. Publ. Mathe-Debrecen 89(1–2), 73–88 (2016)MathSciNetzbMATHGoogle Scholar
  115. 115.
    Cui, Y.J., Zou, Y.M.: Existence of solutions for second-order integral boundary value problems. Nonlinear Anal. Model. Control 21(6), 828–838 (2016)MathSciNetGoogle Scholar
  116. 116.
    Dong, H.H., Guo, B.Y., Yin, B.S.: Generalized fractional supertrace identity for Hamiltonian structure of Nls-Mkdv hierarchy with self-consistent sources. Anal. Math. Phys. 6(2), 199–209 (2016)MathSciNetzbMATHGoogle Scholar
  117. 117.
    Liu, F., Wu, H.X.: L-p bounds for marcinkiewicz integrals associated to homogeneous mappings. Monatshefte für Mathematik 181(4), 875–906 (2016)MathSciNetzbMATHGoogle Scholar
  118. 118.
    Li, X.P., Lin, X.Y., Lin, Y.Q.: Lyapunov-Type conditions and stochastic differential equations driven by G-brownian motion. J. Math. Anal. Appl. 439(1), 235–255 (2016)MathSciNetzbMATHGoogle Scholar
  119. 119.
    Liu, F., Zhang, D.Q.: Multiple singular integrals and maximal operators with mixed homogeneity along compound surfaces. Math. Inequal. Appl. 19(2), 499–522 (2016)MathSciNetzbMATHGoogle Scholar
  120. 120.
    Zhao, Y., Zhang, W.H.: Observer-based controller design for singular stochastic Markov jump systems with state dependent noise. J. Syst. Sci. Complex. 29(4), 946–958 (2016)MathSciNetzbMATHGoogle Scholar
  121. 121.
    Ma, H.J., Jia, Y.M.: Stability analysis for stochastic differential equations with infinite Markovian switchings. J. Math. Anal. Appl. 435(1), 593–605 (2016)MathSciNetzbMATHGoogle Scholar
  122. 122.
    Zhang, T.Q., Ma, W.B., Meng, X.Z., Zhang, T.H.: Periodic solution of a prey-predator model with nonlinear state feedback control. Appl. Math. Comput. 266, 95–107 (2015)MathSciNetGoogle Scholar
  123. 123.
    Liu, F., Zhang, D.Q.: Parabolic marcinkiewicz integrals associated to polynomials compound curves and extrapolation. Bull. Korean Math. Soc. 52(3), 771–788 (2015)MathSciNetzbMATHGoogle Scholar
  124. 124.
    Ling, S.T., Cheng, X.H., Jiang, T.S.: An algorithm for coneigenvalues and coneigenvectors of quaternion matrices. Adv. Appl. Clifford Algebras 25(2), 377–384 (2015)MathSciNetzbMATHGoogle Scholar
  125. 125.
    Liu, F., Wu, H.X., Zhang, D.Q.: L-p bounds for parametric marcinkiewicz integrals with mixed homogeneity. Math. Inequal. Appl. 18(2), 453–469 (2015)MathSciNetzbMATHGoogle Scholar
  126. 126.
    Liu, F., Wu, H.X.: On the regularity of the multisublinear maximal functions. Can. Math. Bull. 58(4), 808–817 (2015)MathSciNetzbMATHGoogle Scholar
  127. 127.
    Gao, M., Sheng, L., Zhang, W.H.: Stochastic H-2/H-infinity control of nonlinear systems with time-delay and state-dependent noise. Appl. Math. Comput. 266, 429–440 (2015)MathSciNetGoogle Scholar
  128. 128.
    Li, Y.X., Huang, X., Song, Y.W., Lin, J.N.: A new fourth-order memristive chaotic system and its generation. Int. J. Bifurc. Chaos 25(11), 1550151 (2015)MathSciNetGoogle Scholar
  129. 129.
    Xu, X.X.: A deformed reduced semi-discrete Kaup-Newell equation, the related integrable family and darboux transformation. Appl. Math. Comput. 251, 275–283 (2015)MathSciNetzbMATHGoogle Scholar
  130. 130.
    Li, X.Y., Zhao, Q.L., Li, Y.X., Dong, H.H.: Binary bargmann symmetry constraint associated with 3×3 discrete matrix spectral problem. J. Nonlinear Sci. Appl. 8(5), 496–506 (2015)MathSciNetzbMATHGoogle Scholar
  131. 131.
    Yu, J., Li, M.Q., Wang, Y.L., He, G.P.: A decomposition method for large-scale box constrained optimization. Appl. Math. Comput. 231, 9–15 (2014)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yu-Guang Yang
    • 1
    Email author
  • Shang Gao
    • 1
  • Dan Li
    • 2
  • Yi-Hua Zhou
    • 1
  • Wei-Min Shi
    • 1
  1. 1.Faculty of Information TechnologyBeijing University of TechnologyBeijingChina
  2. 2.College of Computer Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations