Designs of interactions between discrete- and continuous-variable states for generation of hybrid entanglement

  • Sergey A. PodoshvedovEmail author
  • Nguyen Ba An


We develop theory of realizing different types of hybrid entanglement between discrete-variable (single photon) and continuous-variable states (coherent states). The key mechanism for generating such hybrid entangled states is thanks to superposing microscopic discrete-variable state with macroscopic continuous-variable Schrodinger cat state on highly transmissive beam splitter followed by measurement strategies in such a way that all the information about the amplitude of the continuous-variable state is erased. Conditions for obtaining the balanced hybrid entangled states are established and their degree of entanglement is evaluated.


Displaced number states DV–CV interaction Schrodinger cat state 



S.A.P. is supported by Act 211 Government of the Russian Federation, contract No. 02.A03.21.0011, while N.B.A. is supported by the National Foundation for Science and Technology Development (NAFOSTED) under Project No. 103.01-2017.08.


  1. 1.
    Knill, E., Laflamme, L., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    Braunstein, S., van Loock, P.: Quantum information with continuous variables. Rev. Mod. Phys. 77, 513 (2005)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    O’Brien, J.L., Furusawa, A., Vučković, J.: Photonic quantum technologies. Nat. Photon. 3, 687 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    Gerry, C.C.: Generation of optical macroscopic quantum superposition states via state reduction with a Mach–Zehnder interferometry containin a Kerr medium. Phys. Rev. A 59, 4095 (1999)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. University Press, Cambridge (2000)zbMATHGoogle Scholar
  6. 6.
    Lutkenhaus, N., Calsamiglia, J., Suominen, K.A.: Bell measurements for teleportation. Phys. Rev. A 59, 3245 (1999)ADSMathSciNetGoogle Scholar
  7. 7.
    Bouwmeester, D., Pan, J.W., Mattle, K., Eible, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    Boschi, D., Branca, S., De Martini, F., Harcy, L., Popescu, S.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einsteing–Podolsky–Rosen channels. Phys. Rev. Lett. 80, 1121 (1998)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Pittman, T.B., Fitch, M.J., Jacobs, B.C., Franson, J.D.: Experimental controlled-NOT logic gate for single photons in the coincidence basis. Phys. Rev. A 68, 032316 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    Braunstein, S.L., Kimble, H.J.: Teleportation of continuous quantum variables. Phys. Rev. Lett. 80, 869 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    Man, Z.X., Xia, Y.J., An, N.B.: Simultaneous observation of particle and wave behaviors of entangled photons. Sci. Rep. 7, 42539 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    Rab, A.S., Polino, E., Man, Z.X., An, N.B., Xia, Y.J., Spagnolo, N., Franco, R.L., Sciarrino, F.: Entanglement of photons in their dual wave-particle nature. Nat. Commun. 8, 915 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    Schrӧdinger, E.: Die gegenwӓrtige Situation in der Quantenmechanik. Naturwissenschaften 23, 807 (1935)ADSCrossRefGoogle Scholar
  14. 14.
    van Loock, P., Munro, W.J., Nemoto, K., Spiler, T.P., Ladd, T.D., Braunstein, S.L., Milburn, G.J.: Hybrid quantum computation in quantum optics. Phys. Rev. A 78, 022303 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    Furusava, A., van Loock, P.: Quantum Teleportation and Experiment—A Hybrid Approach to Optical Quantum Information Processing. Wiley-VCH, Weinheim (2011)CrossRefGoogle Scholar
  16. 16.
    Lee, S.-W., Jeong, H.: Near-deterministic quantum teleportation and resource-efficient quantum computation using linear optics and hybrid qubit. Phys. Rev. A 87, 022326 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    Podoshvedov, S.A.: Quantum teleportation protocol with assistant who prepares the amplitude modulated unknown qubits. JOSA B 35, 861 (2018)ADSCrossRefGoogle Scholar
  18. 18.
    de Martini, F., Sciarrino, F., Vitelli, C.: Entanglement test on a microscopic–macroscopic system. Phys. Rev. Lett. 100, 253601 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    Morin, O., Haung, K., Liu, J., Jeannic, H.L., Fabre, C., Laurat, J.: Remote creation of hybrid entanglement between particle-like and wave-like optical qubits. Nat. Photonics 8, 570 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    Jeong, H., Zavatta, A., Kang, M., Lee, S.-W., Costanzo, L.S., Grandi, S., Ralph, T.C., Bellini, M.: Generation of hybrid entanglement of light. Nat. Photonics 8, 564 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    Costanzo, L.S., Zavatta, A., Grandi, S., Bellini, M., Jeong, H., Kang, M., Lee, S.-W., Ralph, T.C.: Properties of hybrid entanglement between discrete- and continuous-variable states of light. Phys. Scr. 90, 074045 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    Bich, C.T., Dat, L.T., Hop, N.V., An, N.B.: Deterministic joint remote preparation of an equatorial hybrid state via high-dimensional Einstein–Podolsky–Rosen pairs: active versus passive receiver. Quantum Inf. Process. 17, 75 (2018)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Podoshvedov, S.A.: Generation of displaced squeezed superpositions of coherent states. J. Exp. Theor. Phys. 114, 451 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    Bruno, S., Martin, A., Sekatski, P., Sangouard, N., Thew, R., Gisin, N.: Displacement of entanglement back and forth between the micro and macro domains. Nat. Phys. 9, 545 (2013)CrossRefGoogle Scholar
  25. 25.
    Lvovsky, A.I., Ghobadi, R., Chandra, A., Prasad, A.S., Simon, C.: Observation of micro–macro entanglement of light. Nat. Phys. 9, 541 (2013)CrossRefGoogle Scholar
  26. 26.
    Podoshvedov, S.A.: Elementary quantum gates in different bases. Quant. Inf. Proc. 15, 3967 (2016)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Podoshvedov, S.A.: Building of one-way Hadamard gate for squeezed coherent states. Phys. Rev. A 87, 012307 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    Podoshvedov, S.A., Kim, J., Kim, K.: Elementary quantum gates with Gaussian states. Quantum Inf. Proc. 13, 1723 (2014)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Paris, M.G.A.: Displacement operator by beam splitter. Phys. Lett. A 217, 78 (1996)ADSCrossRefGoogle Scholar
  30. 30.
    Reck, M., Zeilinger, A., Bernstein, H.J., Bertani, P.: Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58 (1994)ADSCrossRefGoogle Scholar
  31. 31.
    Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)ADSCrossRefGoogle Scholar
  34. 34.
    An, N.B.: Teleportation of coherent state superposition within a network. Phys. Rev. A 68, 022321 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    Shanta, P., Chaturverdi, S., Srinivasan, V., Agarwal, G.S., Mehta, C.L.: Unified approach to multiphoton coherent states. Phys. Rev. Lett. 72, 1447 (1994)ADSCrossRefGoogle Scholar
  36. 36.
    Laha, P., Lakshmibala, S., Balakrishnan, V.: Estimation of nonclassical properties of multiphoton coherent states from optical tomograms. J. Mod. Optics (2018). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Computer Modeling and Nanotechnology, Institute of Natural and Exact SciencesSouth Ural State University (SUSU)ChelyabinskRussia
  2. 2.Thang Long Institute of Mathematics and Applied Sciences (TIMAS), Thang Long UniversityHanoiVietnam
  3. 3.Institute of PhysicsVietnam Academy of Science and Technology (VAST)HanoiVietnam

Personalised recommendations