Advertisement

Practical covert quantum key distribution with decoy-state method

  • Fen-Zhuo Guo
  • Li LiuEmail author
  • An-Kang Wang
  • Qiao-Yan Wen
Article
  • 81 Downloads

Abstract

Covert communication methods are used in the communication with high security level. When it turns to quantum communication, covertness is also an important concern which is firstly discussed by Arrazola and Scarani (Phys Rev Lett, 117:250503, 2016). To make quantum key distribution (QKD) protocol more suitable in the scenarios need high security, we propose a covert QKD protocol with decoy-state method in this paper. The secure key rate and covertness of the covert decoy-state QKD are proved. We compare the performance of the covert decoy-state QKD with those of the original decoy-state QKD and covert QKD without decoy states in numerical simulations. It shows that (1) the covert decoy-state QKD can have a performance comparable to the original decoy-state QKD protocol besides its covertness; (2) the covert decoy-state QKD can have a considerable improvement of transmission distance over covert QKD without decoy states at the cost of a small change of covertness parameter. Furthermore, the statistical fluctuation due to the finite length of data is also taken into account based on the Gaussian analysis method.

Keywords

Quantum key distribution Decoy-state method Covert communication 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China, Grant Nos. 61572081, 61672110 and 61671082.

References

  1. 1.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: In Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, pp. 175–179 (1984)Google Scholar
  2. 2.
    Simon, M.K., Omura, J.K., Scholtz, R.A., Levitt, B.K.: Spread Spectrum Communications Handbook. McGraw-Hill, New York City (2002)Google Scholar
  3. 3.
    Fridrich, J.: Steganography in Digital Media: Principles, Algorithms, and Applications. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  4. 4.
    Bash, B.A., Guha, S., Goeckel, D., Towsley, D.: Quantum noise limited optical communication with low probability of detection. In: 2013 IEEE International Symposium on Information Theory Proceedings (ISIT), pp. 1715–1719 (2013)Google Scholar
  5. 5.
    Che, P.H., Bakshi, M., Jaggi, S.: Reliable deniable communication: hiding messages in noise. In: 2013 IEEE International Symposium on Information Theory Proceedings (ISIT), pp. 2945–2949 (2013)Google Scholar
  6. 6.
    Bash, B.A., Goeckel, D., Towsley, D.: Limits of reliable communication with low probability of detection on awgn channels. IEEE J. Sel. Areas Commun. 31, 1921 (2013)CrossRefGoogle Scholar
  7. 7.
    Bash, B.A., Gheorghe, A.H., Patel, M., Habif, J.L., Goeckel, D., Towsley, D., Guha, S.: Quantum-secure covert communication on bosonic channels. Nat. Commun. 6, 8626 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    Arrazola, J.M., Scarani, V.: Covert quantum communication. Phys. Rev. Lett. 117, 250503 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    Scarani, V., Acin, A., Ribordy, G., Gisin, N.: Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. Phys. Rev. Lett. 92, 057901 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    Wang, X.B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    Lo, H.K., Ma, X.F., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    Lin, S., Wen, Q.Y., Gao, F., Zhu, F.C.: Eavesdropping on secure deterministic communication with qubits through photon-number-splitting attacks. Phys. Rev. A 79, 054303 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    Brassard, G., Lutkenhaus, N., Mor, T., Sanders, B.C.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    Song, T.T., Zhang, J., Qin, S.J., Gao, F., Wen, Q.Y.: Finite-key analysis for quantum key distribution with decoy states. Quantum Inf. Comput. 11, 374–389 (2011)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Ma, X., Razavi, M.: Alternative schemes for measurement-device-independent quantum key distribution. Phys. Rev. A 86, 062319 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    Song, T.T., Wen, Q.Y., Guo, F.Z., Tan, X.Q.: Finite-key analysis for measurement-device-independent quantum key distribution. Phys. Rev. A 86, 022332 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    Rubenok, A., Slater, J.A., Chan, P., Lucio-Martinez, I., Tittel, W.: Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks. Phys. Rev. Lett. 111, 130501 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    Wang, X.B.: Three-intensity decoy-state method for device-independent quantum key distribution with basis-dependent errors. Phys. Rev. A 87, 012320 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    Yu, Z.W., Zhou, Y.H., Wang, X.B.: Three-intensity decoy-state method for measurement device independent quantum key distribution. Phys. Rev. A 88, 062339 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    Zhou, C., Bao, W.S., Zhang, H.L., Li, H.W., Wang, Y., Li, Y., Wang, X.: Biased decoy-state measurement-device-independent quantum key distribution with finite resources. Phys. Rev. A 91, 022313 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    Zhou, Y.H., Yu, Z.W., Wang, X.B.: Making the decoy-state measurement-device-independent quantum key distribution practically useful. Phys. Rev. A 93, 042324 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    Liu, L., Guo, F.Z., Qin, S.J., Wen, Q.Y.: Round-robin differential-phase-shift quantum key distribution with a passive decoy state method. Sci. Rep. 7, 42261 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    Liu, L., Guo, F.Z., Wen, Q.Y.: Practical passive decoy state measurement-device-independent quantum key distribution with unstable sources. Sci. Rep. 7, 11370 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    Wang, Y., Bao, W.S., Zhou, C., Jiang, M.S., Li, H.W.: Tight finite-key analysis of a practical decoy-state quantum key distribution with unstable sources. Phys. Rev. A 94, 032335 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    Sun, S.H., Gao, M., Li, C.Y., Liang, L.M.: Practical decoy-state measurement-device-independent quantum key distribution. Phys. Rev. A 87, 052329 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    Xu, F., Xu, H., Lo, H.K.: Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution. Phys. Rev. A 89, 052333 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    Lim, C.C.W., Curty, M., Walenta, N., Xu, F., Zbinden, H.: Concise security bounds for practical decoy-state quantum key distribution. Phys. Rev. A 89, 022307 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    Zhang, Z., Zhao, Q., Razavi, M., Ma, X.: Improved key-rate bounds for practical decoy-state quantum-key-distribution systems. Phys. Rev. A 95, 012333 (2017)ADSCrossRefGoogle Scholar
  33. 33.
    Gottesman, D., Lo, H.K., Lutkenhaus, N., Preskill, J.: Security of quantum key distribution with imperfect devices. Quantum Inf. Comput. 4, 325 (2004)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Ma, X., Qi, B., Zhao, Y., Lo, H.K.: Practical decoy state for quantum key distribution. Phys. Rev. A 72, 012326 (2005)ADSCrossRefGoogle Scholar
  35. 35.
    Tomamichel, M., Lim, C.C.W., Gisin, N., Renner, R.: Tight finite-key analysis for quantum cryptography. Nat. Commun. 3, 634 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    Ma, X., Fung, C.H.F., Razavi, M.: Statistical fluctuation analysis for measurement-device-independent quantum key distribution. Phys. Rev. A 86, 052305 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    Cody, W.J.: Algorithm 715: SPECFUNCA portable fortran package of special function routines and test drivers. ACM Trans. Math. Softw. 19, 22 (1993)CrossRefGoogle Scholar
  38. 38.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  39. 39.
    Gobby, C., Yuan, Z.L., Shields, A.J.: Quantum key distribution over 122 km of standard telecom fiber. Appl. Phys. Lett. 84, 3762 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Networking and Switching TechnologyBeijing University of Posts and TelecommunicationsBeijingPeople’s Republic of China
  2. 2.School of ScienceBeijing University of Posts and TelecommunicationsBeijingPeople’s Republic of China

Personalised recommendations