Tunable quantum routing via asymmetric intercavity couplings

  • Jin-Song HuangEmail author
  • Jing-Wen Wang
  • Yan-Ling Li
  • Yao Wang
  • You-Wen Huang


Routing efficiently the photon signals between different channels is essential in an optical quantum network. Recent chiral waveguide–emitter coupling techniques are widely applied to improve the routing capabilities in waveguide systems. As a possible alternative, we put forward a proposal to control the quantum routing of photons by adjusting asymmetric intercavity couplings on both sides of a cross-cavity in an X-shaped coupled-resonator waveguide. With the robust and tunable intercavity couplings, high transfer rate between quantum channels and expected probability distributions of two ports in the same output channel can be easily implemented. The asymmetric intercavity coupling may be utilized as a new handle to efficiently control the single-photon routing.


Quantum routing Scattering theory Optical waveguide 



This work was supported by the National Natural Science Foundation of China (Grant Nos. 11247032 and 61765007), and Scientific Research Foundation of the Jiangxi Provincial Education Department (Grant Nos. GJJ170556, GJJ170557, and GJJ180424).


  1. 1.
    Kimble, H.J.: The quantum internet. Nature (London) 453, 1023–1031 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    O’Brien, J.L., Furusawa, A., Vuckovic, J.: Photonic quantum technologies. Nat. Photonics 3, 687–695 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    Cao, C., Duan, Y.W., Chen, X., Zhang, R., Wang, T.J., Wang, C.: Implementation of single-photon quantum routing and decoupling using a nitrogen-vacancy center and a whispering-gallery-mode resonator-waveguide system. Opt. Express 25(15), 16931 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    Hu, C.Y.: Photonic transistor and router using a single quantum-dot-confined spin in a single-sided optical microcavity. Sci. Rep. 7, 45582 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    Aoki, T., Parkins, A.S., Alton, D.J., Regal, C.A., Dayan, B., Ostby, E., Vahala, K.J., Kimble, H.J.: Efficient routing of single photons with one atom and a microtoroidal cavity. Phys. Rev. Lett. 102(8), 083601 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    Hoi, I.C., Wilson, C.M., Johansson, G., Palomaki, T., Peropadre, B., Delsing, P.: Demonstration of a single-photon router in the microwave regime. Phys. Rev. Lett. 107(7), 073601 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    Xia, K., Twamley, J.: All-optical switching and router via the direct quantum control of coupling between cavity modes. Phys. Rev. X 3(3), 031013 (2013)Google Scholar
  8. 8.
    Shomroni, I., Rosenblum, S., Lovsky, Y., Brechler, O., Guendelman, G., Dayan, B.: All-optical routing of single photons by a one-atom switch controlled by a single photon. Science 345(6199), 903–906 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    Zhou, L., Yang, L.P., Li, Y., Sun, C.P.: Quantum routing of single photons with a cyclic three-level system. Phys. Rev. Lett. 111(10), 103604 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    Lu, J., Zhou, L., Kuang, L., Nori, F.: Single-photon router: coherent control of multi-channel scattering for single-photons with quantum interferences. Phys. Rev. A 89(1), 013805 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    Agarwal, G.S., Huang, S.: Optomechanical systems as single-photon routers. Phys. Rev. A 85(2), 021801 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    Li, X., Zhang, W.Z., Xiong, B., Zhou, L.: Single-photon multi-ports router based on the coupled cavity optomechanical system. Sci. Rep. 6, 39343 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    Yuan, X.X., Ma, J.J., Hou, P.Y., Chang, X.Y., Zu, C., Duan, L.M.: Experimental demonstration of a quantum router. Sci. Rep. 5, 12452 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    Yan, G.A., Cai, Q.Y., Chen, A.X.: Information-holding quantum router of single photons using natural atom. Eur. Phys. J. D 70, 93 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    Yan, G.A., Qiao, H.X., Lu, H., Chen, A.X.: Quantum information-holding single-photon router based on spontaneous emission. Sci. China Phys. Mech. Astron. 60(9), 090311 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    Gonzalez-Ballestero, C., Moreno, E., Garcia-Vidal, F.J., Gonzalez-Tudela, A.: Nonreciprocal few-photon routing schemes based on chiral waveguide–emitter couplings. Phys. Rev. A 94(6), 063817 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    Cheng, M.T., Ma, X.S., Zhang, J.Y., Wang, B.: Single photon transport in two waveguides chirally coupled by a quantum emitter. Opt. Express 24(17), 19988–19993 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    Yan, C.H., Li, Y., Yuan, H., Wei, L.F.: Targeted photonic routers with chiral photon–atom interactions. Phys. Rev. A 97(2), 023821 (2018)ADSCrossRefGoogle Scholar
  19. 19.
    Li, X., Wei, L.F.: Ideal photonic absorption, emission, and routings in chiral waveguides. Opt. Commun. 425, 13–18 (2018)ADSCrossRefGoogle Scholar
  20. 20.
    Tao, L., Miranowicz, A., Hu, X., Xia, K., Nori, F.: Quantum memory and gates using a \(\Lambda \)-type quantum emitter coupled to a chiral waveguide. Phys. Rev. A 97(6), 062318 (2018)ADSGoogle Scholar
  21. 21.
    Coles, R.J., Price, D.M., Dixon, J.E., Royall, B., Clarke, E., Kok, P.: Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer. Nat. Commun. 7, 11183 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    Söllner, I., Mahmoodian, S., Hansen, S.L., Midolo, L., Javadi, A., Kiršanskė, G., et al.: Deterministic photon–emitter coupling in chiral photonic circuits. Nat. Nanotechnol. 10(9), 775–778 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    Mirza, I.M., Schotland, J.C.: Multi-qubit entanglement in bidirectional-chiral-waveguide QED. Phys. Rev. A 94(1), 012302 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    Gonzalez-Ballestero, C., Gonzalez-Tudela, A., Garcia-Vidal, F.J., Moreno, E.: Chiral route to spontaneous entanglement generation. Phys. Rev. B 92(15), 155304 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    Scheucher, M., Hilico, A., Will, E., Volz, J., Rauschenbeutel, A.: Quantum optical circulator controlled by a single chirally coupled atom. Science 345(6319), 1577–1580 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    Sayrin, C., Junge, C., Mitsch, R., Albrecht, B., O’Shea, D., Schneeweiss, P., Volz, J., Rauschenbeutel, A.: Nanophotonic optical isolator controlled by the internal state of cold atoms. Phys. Rev. X 5(4), 041036 (2015)Google Scholar
  27. 27.
    Pichler, H., Ramos, T., Daley, A.J., Zoller, P.: Quantum optics of chiral spin networks. Phys. Rev. A 91(4), 042116 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    Mahmoodian, S., Lodahl, P., SãRensen, A.S.: Quantum networks with chiral-light–matter interaction in waveguides. Phys. Rev. Lett. 117(24), 240501 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    Akahane, Y., Asano, T., Song, B.S., Noda, S.: High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425(6961), 944–947 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    Faraon, A., Waks, E., Englund, D., Fushman, I., Vučković, J.: Integrated quantum optical networks based on quantum dots and photonic crystals. New J. Phys. 13(5), 5314–5317 (2011)CrossRefGoogle Scholar
  31. 31.
    Wallraff, A., Schuster, D.I., Blais, A., Frunzio, L., Huang, R.S., Majer, J., Kumar, S., Girvin, S.M., Schoelkopf, R.J.: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431(7005), 162–167 (2004)ADSCrossRefGoogle Scholar
  32. 32.
    Angelakis, D.G., Santos, M.F., Yannopapas, V., Ekert, A.: A proposal for the implementation of quantum gates with photonic-crystal waveguides. Phys. Lett. A 362(5–6), 377–380 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    Zhou, L., Lu, J., Sun, C.P.: Coherent control of photon transmission: slowing light in a coupled resonator waveguide doped with \(\Lambda \) atoms. Phys. Rev. A 76(1), 012313 (2007)ADSGoogle Scholar
  34. 34.
    Zhou, L., Dong, H., Sun, C.P., Nori, F.: Quantum super-cavity with atomic mirrors. Phys. Rev. A 78(6), 063827 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    Zhou, L., Gong, Z.R., Liu, Y.X., Sun, C.P., Nori, F.: Controllable scattering of a single photon inside a one-dimensional resonator waveguide. Phys. Rev. Lett. 101(10), 100501 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    Liao, J.Q., Huang, J.F., Liu, Y.X., Kuang, L.M., Sun, C.P.: Quantum switch for single-photon transport in a coupled superconducting transmission-line-resonator array. Phys. Rev. A 80(1), 014301 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    Li, Y., Bruder, C., Sun, C.P.: Generalized Stern–Gerlach effect for chiral molecules. Phys. Rev. Lett. 99(13), 130403 (2007)ADSCrossRefGoogle Scholar
  38. 38.
    Liu, Y.X., You, J.Q., Wei, L.F., Sun, C.P., Nori, F.: Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit. Phys. Rev. Lett. 95(8), 087001 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    Wallraff, A., Schuster, D.I., Blais, A., Frunzio, L., Majer, J., Devoret, M.H., Girvin, S.M., Schoelkopf, R.J.: Approaching unit visibility for control of a superconducting qubit with dispersive readout. Phys. Rev. Lett. 95(6), 060501 (2005)ADSCrossRefGoogle Scholar
  40. 40.
    Blais, A., Gambetta, J., Wallraff, A., Schuster, D.I., Girvin, S.M., Devoret, M.H.: Quantum information processing with circuit quantum electrodynamics. Phys. Rev. A 75(3), 032329 (2007)ADSCrossRefGoogle Scholar
  41. 41.
    Lu, J., Wang, Z.H., Zhou, L.: T-shaped single-photon router. Opt. Express 23(18), 22955–22962 (2015)ADSCrossRefGoogle Scholar
  42. 42.
    Yang, X., Hou, J.J., Wu, C.: Single-photon routing for a L-shaped channel. Int. J. Theor. Phys. 57(2), 602–608 (2018)zbMATHCrossRefGoogle Scholar
  43. 43.
    Schuster, D.I., Wallraff, A., Blais, A., Frunzio, L., Huang, R.S., Majer, J., Girvin, S.M., Schoelkopf, R.J.: ac Stark shift and dephasing of a superconducting qubit strongly coupled to a cavity field. Phys. Rev. Lett. 94(12), 123602 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Information EngineeringJiangxi University of Science and TechnologyGanzhouChina
  2. 2.School of Foreign StudiesJiangxi University of Science and TechnologyGanzhouChina

Personalised recommendations