Advertisement

Quantum simulation scheme of two-dimensional xy-model Hamiltonian with controllable coupling

  • Mun Dae KimEmail author
Article
  • 51 Downloads

Abstract

We study a scheme of quantum simulator for two-dimensional xy-model Hamiltonian. Previously, the quantum simulator for a coupled cavity array spin model has been explored, but the coupling strength is fixed by the system parameters. In the present scheme, several cavity resonators can be coupled with each other simultaneously via an ancilla qubit. In the two-dimensional Kagome lattice of the resonators, the hopping of resonator photonic modes gives rise to the tight-binding Hamiltonian which in turn can be transformed to the quantum xy-model Hamiltonian. We employ the transmon as an ancilla qubit to achieve in situ controllable xy-coupling strength.

Keywords

Quantum simulator xy-model Controllable coupling 

Notes

Acknowledgements

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011-0023467).

References

  1. 1.
    Georgescu, I.M., Ashhab, S., Nori, F.: Quantum simulation. Rev. Mod. Phys. 86, 153 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    Cirac, J.I., Zoller, P.: Goals and opportunities in quantum simulation. Nat. Phys. 8, 264 (2012)CrossRefGoogle Scholar
  3. 3.
    Buluta, I., Nori, F.: Quantum simulators. Science 326, 108 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    Hartmann, M.J., Brandão, F.G.S.L., Plenio, M.B.: Strongly interacting polaritons in coupled arrays of cavities. Nat. Phys. 2, 849 (2006)CrossRefGoogle Scholar
  5. 5.
    Xue, P., Ficek, Z., Sanders, B.C.: Probing multipartite entanglement in a coupled Jaynes–Cummings system. Phys. Rev. A 86, 043826 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    Greentree, A.D., Tahan, C., Cole, J.H., Hollenberg, L.C.L.: Quantum phase transitions of light. Nat. Phys. 2, 856 (2006)CrossRefGoogle Scholar
  7. 7.
    Schmidt, S., Blatter, G.: Strong coupling theory for the Jaynes–Cummings–Hubbard model. Phys. Rev. Lett. 103, 086403 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    Koch, J., Le Hur, K.: Superfluid–Mott-insulator transition of light in the Jaynes–Cummings lattice. Phys. Rev. A 80, 023811 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    Fan, J., Zhang, Y., Wang, L., Mei, F., Chen, G., Jia, S.: Superfluid–Mott-insulator quantum phase transition of light in a two-mode cavity array with ultrastrong coupling. Phys. Rev. A 95, 033842 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    Bernien, H. et al.: Probing many-body dynamics on a 51-atom quantum simulator Nature. 551, 579 (2017)Google Scholar
  11. 11.
    Zhang, J., et al.: Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator. Nature 551, 601 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    Houck, A.A., Türeci, H.E., Koch, J.: On-chip quantum simulation with superconducting circuits. Nat. Phys. 8, 292 (2012)CrossRefGoogle Scholar
  13. 13.
    Schmidt, S., Koch, J.: Circuit QED lattices: towards quantum simulation with superconducting circuits. Ann. Phys. (Berlin) 525, 395 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    Kim, M.D., Kim, J.: Coupling qubits in circuit-QED cavities connected by a bridge qubit. Phys. Rev. A 93, 012321 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    Kim, M.D., Kim, J.: Scalable quantum computing model in the circuit-QED lattice with circulator function. Quantum Inf. Process. 16, 192 (2017)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Hartmann, M.J., Brandão, F.G.S.L., Plenio, M.B.: Effective spin systems in coupled microcavities. Phys. Rev. Lett. 99, 160501 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    Angelakis, D.G., Santos, M.F., Bose, S.: Photon-blockade-induced Mott transitions and XY spin models in coupled cavity arrays. Phys. Rev. A 76, 031805(R) (2007)ADSCrossRefGoogle Scholar
  18. 18.
    Blais, A., Gambetta, J., Wallraff, A., Schuster, D.I., Girvin, S.M., Devoret, M.H., Schoelkopf, R.J.: Quantum-information processing with circuit quantum electrodynamics. Phys. Rev. A 75, 032329 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    Steffen, M., Kumar, S., DiVincenzo, D.P., Rozen, J.R., Keefe, G.A., Rothwell, M.B., Ketchen, M.B.: High-coherence hybrid superconducting qubit. Phys. Rev. Lett. 105, 100502 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    Inomata, K., Yamamoto, T., Billangeon, P.-M., Nakamura, Y., Tsai, J.S.: Large dispersive shift of cavity resonance induced by a superconducting flux qubit in the straddling regime. Phys. Rev. B 86, 140508(R) (2012)ADSCrossRefGoogle Scholar
  21. 21.
    Houck, A.A., Schuster, D.I., Gambetta, J.M., Schreier, J.A., Johnson, B.R., Chow, J.M., Frunzio, L., Majer, J., Devoret, M.H., Girvin, S.M., Schoelkopf, R.J.: Generating single microwave photons in a circuit. Nature 449, 328 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    Hofheinz, M., Weig, E.M., Ansmann, M., Bialczak, R.C., Lucero, E., Neeley, M., O’Connell, A.D., Wang, H., Martinis, J.M., Cleland, A.N.: Generation of Fock states in a superconducting quantum circuit. Nature 454, 310 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    Hofheinz, M., Wang, H., Ansmann, M., Bialczak, R.C., Lucero, E., Neeley, M., O’Connell, A.D., Sank, D., Wenner, J., Martinis, J.M., Cleland, A.N.: Synthesizing arbitrary quantum states in a superconducting resonator. Nature 459, 546 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    Mielke, A.: Exact ground states for the Hubbard model on the Kagome lattice. J. Phys. A. 25, 4335 (1992)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    You, Y.-Z., Chen, Z., Sun, X.-Q., Zhai, H.: Superfluidity of bosons in Kagome lattices with frustration. Phys. Rev. Lett. 109, 265302 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    Petrescu, A., Houck, A.A., Hur, K.L.: Anomalous Hall effects of light and chiral edge modes on the Kagome lattice. Phys. Rev. A 86, 053804 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    Koch, J., Yu, T.M., Gambetta, J., Houck, A.A., Schuster, D.I., Majer, J., Blais, A., Devoret, M.H., Girvin, S.M., Schoelkopf, R.J.: Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    Wallraff, A., Schuster, D.I., Blais, A., Frunzio, L., Huang, R.-S., Majer, J., Kumar, S., Girvin, S.M., Schoelkopf, R.J.: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    Zeytinoğlu, S., Pechal, M., Berger, S., Abdumalikov Jr., A.A., Wallraff, A., Filipp, S.: Microwave-induced amplitude- and phase-tunable qubit-resonator coupling in circuit quantum electrodynamics. Phys. Rev. A 91, 043846 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    Keller, A.J., Dieterle, P.B., Fang, M., Berger, B., Fink, J.M., Painter, O.: Al transmon qubits on silicon-on-insulator for quantum device integration. Appl. Phys. Lett. 111, 042603 (2017)ADSCrossRefGoogle Scholar
  31. 31.
    Bosman, S.J., Gely, M.F., Singh, V., Bothner, D., Castellanos-Gomez, A., Steele, G.A.: Approaching ultrastrong coupling in transmon circuit QED using a high-impedance resonator. Phys. Rev. B 95, 224515 (2017)ADSCrossRefGoogle Scholar
  32. 32.
    Kollár, A.J., Fitzpatrick, M., Houck, A.A.: Hyperbolic Lattices in Circuit Quantum Electrodynamics. arXiv:1802.09549

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Korea Institute for Advanced StudySeoulKorea

Personalised recommendations