Advertisement

Adaptive LSB quantum watermarking method using tri-way pixel value differencing

  • Gaofeng Luo
  • Ri-Gui ZhouEmail author
  • Jia Luo
  • WenWen Hu
  • Yang Zhou
  • Hou Ian
Article
  • 33 Downloads

Abstract

As an important way to protect copyright by embedding watermark in digital images, quantum watermarking catches more and more attentions. In this study, a novel quantum watermarking method on the basis of tri-way pixel value differencing and modified least significant bit (LSB) substitution is proposed. A quantum cover image using the novel-enhanced quantum image representation is partitioned into non-overlapping 2 × 2 blocks with four pixels firstly. To classify the block as a smooth area or an edge area, the tri-way pixel value differences are calculated and compared with a predefined threshold. The quantum watermark image, which is expanded and scrambled, is then embedded into a quantum cover image by the k-bit LSB substitution method, where k is decided by the level of each block. The embedded quantum watermark can be extracted from the quantum stego-image without the assistance of original quantum cover image. Theoretical analysis and simulation-based experiments demonstrate both the feasibility and capabilities of the proposed quantum watermarking method, which has good visual quality, better robustness, and higher security.

Keywords

Quantum image watermarking Pixel value difference Least significant bit Visual quality 

Notes

Acknowledgements

This work is supported by the National Key R&D Plan under Grant Nos. 2018YFC1200200 and 2018YFC1200205, National Natural Science Foundation of China under Grant No. 61463016, and “Science and technology innovation action plan” of Shanghai in 2017 under Grant No. 17510740300.

References

  1. 1.
    Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10, 63–84 (2011).  https://doi.org/10.1007/s11128-010-0177-y MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Zhang, Y., Lu, K., Gao, Y., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12, 2833–2860 (2013).  https://doi.org/10.1007/s11128-013-0567-z ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Li, H.-S., Zhu, Q., Li, M., Ian, H.: Multidimensional color image storage, retrieval, and compression based on quantum amplitudes and phases. Inf. Sci. (Ny). 273, 212–232 (2014).  https://doi.org/10.1016/j.ins.2014.03.035 CrossRefGoogle Scholar
  4. 4.
    Zhang, Y., Lu, K., Xu, K., Gao, Y., Wilson, R.: Local feature point extraction for quantum images. Quantum Inf. Process. 14, 1573–1588 (2015).  https://doi.org/10.1007/s11128-014-0842-7 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Jiang, N., Wang, L.: Quantum image scaling using nearest neighbor interpolation. Quantum Inf. Process. 14, 1559–1571 (2015).  https://doi.org/10.1007/s11128-014-0841-8 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Zhou, R.-G., Hu, W., Fan, P., Ian, H.: Quantum realization of the bilinear interpolation method for NEQR. Sci. Rep. 7, 2511 (2017).  https://doi.org/10.1038/s41598-017-02575-6 ADSCrossRefGoogle Scholar
  7. 7.
    Yang, Y.G., Zhao, Q.Q., Sun, S.J.: Novel quantum gray-scale image matching. Optik (Stuttg) 126, 3340–3343 (2015).  https://doi.org/10.1016/j.ijleo.2015.08.010 ADSCrossRefGoogle Scholar
  8. 8.
    Jiang, N., Dang, Y., Wang, J.: Quantum image matching. Quantum Inf. Process. 15, 3543–3572 (2016).  https://doi.org/10.1007/s11128-016-1364-2 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Luo, G., Zhou, R., Liu, X.: Fuzzy matching based on gray-scale difference for quantum images. Int. J. Theor. Phys. 57, 2447–2460 (2018)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Wang, J., Jiang, N., Wang, L.: Quantum image translation. Quantum Inf. Process. 14, 1589–1604 (2015).  https://doi.org/10.1007/s11128-014-0843-6 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Zhou, R.G., Tan, C., Ian, H.: Global and local translation designs of quantum image based on FRQI. Int. J. Theor. Phys. 56, 1382–1398 (2017).  https://doi.org/10.1007/s10773-017-3279-9 MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Yan, F., Iliyasu, A.M., Le, P.Q.: Quantum image processing: a review of advances in its security technologies. Int. J. Quantum Inf. 15, 1730001 (2017).  https://doi.org/10.1142/S0219749917300017 MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Jiang, N., Wang, L., Wu, W.Y.: Quantum Hilbert image scrambling. Int. J. Theor. Phys. 53, 2463–2484 (2014).  https://doi.org/10.1007/s10773-014-2046-4 CrossRefzbMATHGoogle Scholar
  14. 14.
    Jiang, N., Wu, W.Y., Wang, L.: The quantum realization of Arnold and Fibonacci image scrambling. Quantum Inf. Process. 13, 1223–1236 (2014).  https://doi.org/10.1007/s11128-013-0721-7 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Zhou, R.G., Sun, Y.J., Fan, P.: Quantum image gray-code and bit-plane scrambling. Quantum Inf. Process. 14, 1717–1734 (2015).  https://doi.org/10.1007/s11128-015-0964-6 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Zhang, W.-W., Gao, F., Liu, B., Wen, Q.-Y., Chen, H.: A watermark strategy for quantum images based on quantum Fourier transform. Quantum Inf. Process. 12, 793–803 (2013).  https://doi.org/10.1007/s11128-012-0423-6 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Song, X.H., Wang, S., Liu, S., Abd El-Latif, A.A., Niu, X.M.: A dynamic watermarking scheme for quantum images using quantum wavelet transform. Quantum Inf. Process. 12, 3689–3706 (2013).  https://doi.org/10.1007/s11128-013-0629-2 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Song, X., Wang, S.A., Abd El-Latif, A., Niu, X.: Dynamic watermarking scheme for quantum images based on Hadamard transform. Multimed. Syst. 20, 379–388 (2014).  https://doi.org/10.1007/s00530-014-0355-3 CrossRefGoogle Scholar
  19. 19.
    Jiang, N., Wang, L.: A novel strategy for quantum image steganography based on moire pattern. Int. J. Theor. Phys. 54, 1021–1032 (2015).  https://doi.org/10.1007/s10773-014-2294-3 CrossRefzbMATHGoogle Scholar
  20. 20.
    Jiang, N., Zhao, N., Wang, L.: LSB based quantum image steganography algorithm. Int. J. Theor. Phys. 55, 107–123 (2015).  https://doi.org/10.1007/s10773-015-2640-0 CrossRefzbMATHGoogle Scholar
  21. 21.
    Sang, J., Wang, S., Li, Q.: Least significant qubit algorithm for quantum images. Quantum Inf. Process. 15, 4441–4460 (2016).  https://doi.org/10.1007/s11128-016-1411-z ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Miyake, S., Nakamae, K.: A quantum watermarking scheme using simple and small-scale quantum circuits. Quantum Inf. Process. 15, 1849–1864 (2016).  https://doi.org/10.1007/s11128-016-1260-9 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Heidari, S., Pourarian, M.R., Gheibi, R., Naseri, M., Houshmand, M.: Quantum red–green–blue image steganography. Int. J. Quantum Inf. 15, 1750039 (2017).  https://doi.org/10.1142/S0219749917500393 MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Naseri, M., Heidari, S., Baghfalaki, M., Fatahi, N., Gheibi, R., Farouk, A., Habibi, A.: A new secure quantum watermarking scheme. Optik (Stuttg) 139, 77–86 (2017).  https://doi.org/10.1016/j.ijleo.2017.03.091 ADSCrossRefGoogle Scholar
  25. 25.
    Zhou, R.G., Hu, W., Fan, P.: Quantum watermarking scheme through Arnold scrambling and LSB steganography. Quantum Inf. Process. 16, 212–232 (2017).  https://doi.org/10.1007/s11128-017-1640-9 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Li, P., Zhao, Y., Xiao, H., Cao, M.: An improved quantum watermarking scheme using small-scale quantum circuits and color scrambling. Quantum Inf. Process. 16, 127–160 (2017).  https://doi.org/10.1007/s11128-017-1577-z ADSCrossRefzbMATHGoogle Scholar
  27. 27.
    Zhou, R.-G., Hu, W., Fan, P., Luo, G.: Quantum color image watermarking based on Arnold transformation and LSB steganography. Int. J. Quantum Inf. 16, 1850021 (2018).  https://doi.org/10.1142/S0219749918500211 MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Luo, G., Zhou, R., Hu, W., Luo, J., Liu, X., Ian, H.: Enhanced least significant qubit watermarking scheme for quantum images. Quantum Inf. Process. 17, 299 (2018).  https://doi.org/10.1007/s11128-018-2075-7 ADSCrossRefzbMATHGoogle Scholar
  29. 29.
    Wu, D.C., Tsai, W.H.: A steganographic method for images by pixel-value differencing. Pattern Recognit. Lett. 24, 1613–1626 (2003).  https://doi.org/10.1016/S0167-8655(02)00402-6 CrossRefzbMATHGoogle Scholar
  30. 30.
    Chang, K.C., Chang, C.P., Huang, P.S., Tu, T.M.: A novel image steganographic method using tri-way pixel-value differencing. J. Multimed. 3, 37–44 (2008).  https://doi.org/10.4304/jmm.3.2.37-44 CrossRefGoogle Scholar
  31. 31.
    Tirkel, A.Z., Rankin, G.A., van Schyndel, R.G., Ho, W.J., Osborne, C.F.: Electronic watermark. In: Proceedings of Digital Image Computing: Techniques and Applications, pp. 666–672 (1993)Google Scholar
  32. 32.
    Zhou, R., Hu, W., Liu, X., Fan, P., Luo, G.: Quantum realization of the nearest neighbor value interpolation method for INEQR. Quantum Inf. Process. 17, 166 (2018).  https://doi.org/10.1007/s11128-018-1921-y ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Dong, W., Kaifeng, H.: Design of quantum comparator based on extended general Toffoli gates with multiple targets. Comput. Sci. 39, 302–306 (2012)Google Scholar
  34. 34.
    Fridrich, J.: Reliable detection of LSB steganography in color and grayscale images. In: ACM Workshop on Multimedia and Security, pp. 27–30 (2001)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Gaofeng Luo
    • 1
    • 2
  • Ri-Gui Zhou
    • 1
    Email author
  • Jia Luo
    • 1
  • WenWen Hu
    • 1
  • Yang Zhou
    • 1
  • Hou Ian
    • 3
  1. 1.College of Information EngineeringShanghai Maritime UniversityShanghaiChina
  2. 2.College of Information EngineeringShaoyang UniversityHunanChina
  3. 3.Institute of Applied Physics and Materials Engineering, FSTUniversity of MacauMacauChina

Personalised recommendations