Advertisement

Non-commutative measure of quantum correlations under local operations

  • D. G. Bussandri
  • A. P. Majtey
  • A. Valdés-HernándezEmail author
Article
  • 84 Downloads

Abstract

We study some desirable properties of recently introduced measures of quantum correlations based on the amount of non-commutativity quantified by the Hilbert–Schmidt norm (Guo in Sci Rep 6:25241, 2016; Majtey et al. in Quantum Inf Process 16:226, 2017). Specifically, we show that: (1) for any bipartite (\(A+B\)) state, the measures of quantum correlations with respect to subsystem A are non-increasing under any local commutative preserving operation on subsystem A, and (2) for Bell-diagonal states, the measures are non-increasing under arbitrary local operations on B. Our results accentuate the potentialities of such measures and exhibit them as valid monotones in a resource theory of quantum correlations with free operations restricted to the appropriate local channels.

Keywords

Quantum correlation measures Non-commutativity quantum discord Local operations Local commutative preserving operations 

Notes

Acknowledgements

D. B. and A. P. M. acknowledge the Argentinian agency SeCyT-UNC and CONICET for financial support. D. B. has a fellowship from CONICET. A. V. H. gratefully acknowledges financial support from DGAPA, UNAM through project PAPIIT IA101918.

References

  1. 1.
    Knill, E., Laflamme, R.: Power of one bit of quantum information. Phys. Rev. Lett. 81, 5672 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    Laflamme, R., Cory, D.G., Negrevergne, C., Viola, L.: NMR quantum information processing and entanglement. Quantum Inf. Comput. 2, 166 (2002)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Braunstein, S.L., Caves, C.M., Jozsa, R., Linden, N., Popescu, S., Schack, R.: Separability of very noisy mixed states and implications for NMR quantum computing. Phys. Rev. Lett. 83, 1054 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    Meyer, D.A.: Sophisticated quantum search without entanglement. Phys. Rev. Lett. 85, 2014 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    Datta, A., Flammia, S.T., Caves, C.M.: Entanglement and the power of one qubit. Phys. Rev. A 72, 042316 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    Datta, A., Vidal, G.: Role of entanglement and correlations in mixed-state quantum computation. Phys. Rev. A 75, 042310 (2007)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Lanyon, B.P., Barbieri, M., Almeida, M.P., White, A.G.: Experimental quantum computing without entanglement. Phys. Rev. Lett. 101, 200501 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett 88, 017901 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899 (2001)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Lang, M.D., Caves, C.M.: Quantum discord and the geometry of bell-diagonal states. Phys. Rev. Lett. 105, 150501 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Cen, L.-X., Li, X.Q., Shao, J., Yan, Y.J.: Quantifying quantum discord and entanglement of formation via unified purifications. Phys. Rev. A 83, 054101 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    Adesso, G., Datta, A.: Quantum versus classical correlations in Gaussian states. Phys. Rev. Lett. 105, 030501 (2010); Giorda, P., Paris, M., G., A.: Gaussian Quantum Discord. ibid. 105, 020503 (2010)Google Scholar
  14. 14.
    Ali, M., Rau, A., R., P., Alber, G.: Quantum discord for two-qubit X states. Phys. Rev. A 81, 042105 (2010); see also Ali M. , Rau, A., R., P., and Alber, G., ibid. 82, 069902(E) (2010)Google Scholar
  15. 15.
    Shi, M., Yang, W., Jiang, F., Du, J.: Quantum discord of two-qubit rank-2 states. J. Phys. A Math. Theor. 44, 415304 (2011)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Chen, Q., Zhang, C., Yu, S., Yi, X.X., Oh, C.H.: Quantum discord of two-qubit X states. Phys. Rev. A 84, 042313 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    Lu, X.M., Ma, J., Xi, Z., Wang, X.: Optimal measurements to access classical correlations of two-qubit states. Phys. Rev. A 83, 012327 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    Girolami, D., Adesso, G.: Quantum discord for general two-qubit states: analytical progress. Phys. Rev. A 83, 052108 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    Li, B., Wang, Z.X., Fei, S.M.: Quantum discord and geometry for a class of two-qubit states. Phys. Rev. A 83, 022321 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    Huang, Y.: Quantum discord for two-qubit X states: analytical formula with very small worst-case error. Phys. Rev. A 88, 014302 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    Luo, S.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    Huang, Y.: Computing quantum discord is NP-complete. New J. Phys. 16, 033027 (2014)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Hu, M.-L., Fan, H.: Measurement-induced nonlocality based on the trace norm. New J. Phys. 17, 033004 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    Hu, M.-L., Fan, H.: Dynamics of entropic measurement-induced nonlocality in structured reservoirs. Ann. Phys. 327, 2343 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    Dakić, B., Vedral, V., Brukner, C.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    Brodutch, A., Terno, D.R.: Quantum discord, local operations, and Maxwell’s demons. Phys. Rev. A 81, 062103 (2010)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Paula, F.M., de Oliveira, T.R., Sarandy, M.S.: Geometric quantum discord through the Schatten 1-norm. Phys. Rev. A 87, 064101 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    Spehner, D., Orszag, M.: Geometric quantum discord with Bures distance. New J. Phys. 15, 103001 (2013)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Spehner, D., Orszag, M.: Geometric quantum discord with Bures distance: the qubit case. J. Phys. A Math. Theor. 47, 035302 (2014)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Jakóbczyk, L.: Spontaneous emission and quantum discord: comparison of Hilbert–Schmidt and trace distance discord. Phys. Lett. A 378, 3248–3253 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    Kheirollahi, A., Akhtarshenas, S.J., Mohammadi, H.: Quantifying nonclassicality of correlations based on the concept of nondisruptive local state identification. Quantum Inf. Process 15, 1585 (2016)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Luo, S., Fu, S.: Hybrid potential model of the \(\alpha \)-cluster structure of 212Po. Phys. Rev. A 82, 034302 (2010)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Guo, Y.: Non-commutativity measure of quantum discord. Sci. Rep. 6, 25241 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    Majtey, A.P., Bussandri, D.G., Ossan, T.G., Lamberti, P.W., Valdés-Hernández, A.: Problem of quantifying quantum correlations with non-commutative discord. Quantum Inf. Process 16, 226 (2017)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Brodutch, A., Modi, K.: Criteria for measures of quantum correlations. Quantum Inf. Comput. 12, 721–742 (2012)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Adesso, G., Bromley, T.R., Cianciaruso, M.: Measures and applications of quantum correlations. J. Phys. A Math. Theor. 49, 473001 (2016)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Streltsov, A., Kampermann, H., Bruß, D.: Behavior of quantum correlations under local noise. Phys. Rev. Lett. 107, 170502 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    Hu, X., Fan, H., Zhou, D.L., Liu, W.M.: Necessary and sufficient conditions for local creation of quantum correlation. Phys. Rev. A. 85, 032102 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    Guo, Y., Hou, J.: Necessary and sufficient conditions for the local creation of quantum discord. J. Phys. A Math. Theor. 46, 155301 (2013)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    Ruskai, M.B., Szarek, S., Werner, E.: An analysis of completely-positive trace-preserving maps on M2. Linear Algebra Appl. 347, 159 (2002)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Bromley, T.R., Silva, I.A., Oncebay-Segura, C.O., Soares-Pinto, D.O.R., de Azevedo, E., Tufarelli, T., Adesso, G.: There is more to quantum interferometry than entanglement. Phys. Rev. A 95, 052313 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Facultad de Matemática, Astronomía, Física y ComputaciónUniversidad Nacional de CórdobaCórdobaArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas de la República ArgentinaCABAArgentina
  3. 3.Instituto de Física Enrique GaviolaConsejo Nacional de Investigaciones Científicas y Técnicas de la República ArgentinaCórdobaArgentina
  4. 4.Instituto de FísicaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico

Personalised recommendations