Protection of quantum dialogue affected by quantum field

  • Zhiming HuangEmail author
  • Haozhen Situ


In this paper, we present a secure quantum dialogue protocol (QDP) by using three-qubit GHZ states, which has high capacity and efficiency. However, a real quantum system unavoidably interacts with its environment, which results in the decoherence phenomenon. Decoherence will restrain the effective application of quantum communication protocols. Thus, in this article we also investigate the QDP affected by fluctuating massless scalar field, and how to protect the QDP in noisy environment. The master equation that governs the noisy QDP evolution is firstly derived. Then, we find that the success probability (SP) of QDP decreases exponentially with evolution time, and with a perfectly reflecting boundary SP can be effectively protected and modulated.


Quantum dialogue GHZ state Massless scalar field Reflecting boundary 



This work is supported by the National Natural Science Foundation of China (61871205), the Innovation Project of Department of Education of Guangdong Province (2017KTSCX180), and the Jiangmen Science and Technology Plan Project for Basic and Theoretical Research (2018JC01010).


  1. 1.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Processing of IEEE International Conference on Computers, System and Signal Processing, pp. 175–179 (1984)Google Scholar
  2. 2.
    Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000)ADSGoogle Scholar
  3. 3.
    Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557 (1992)ADSMathSciNetzbMATHGoogle Scholar
  4. 4.
    Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68, 042315 (2003)ADSGoogle Scholar
  5. 5.
    Deng, F.G., Long, G.L.: Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys. Rev. A 70, 012311 (2004)ADSGoogle Scholar
  6. 6.
    Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78, 022321 (2008)ADSGoogle Scholar
  7. 7.
    Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)ADSGoogle Scholar
  8. 8.
    Huang, W., Su, Q., Xu, B.J., Liu, B., Fan, F., Jia, H.Y., Yang, Y.H.: Improved multiparty quantum key agreement in travelling mode. Sci. China Phys. Mech. Astron. 59, 120311 (2016)Google Scholar
  9. 9.
    Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)ADSGoogle Scholar
  10. 10.
    Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)ADSGoogle Scholar
  11. 11.
    Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)ADSGoogle Scholar
  12. 12.
    Wang, C., et al.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)ADSGoogle Scholar
  13. 13.
    Wang, C., Deng, F.G., Long, G.L.: Multi-step quantum secure direct communication using multi-particle Green–Horne–Zeilinger state. Opt. Commun. 253, 15 (2005)ADSGoogle Scholar
  14. 14.
    Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Quantum secure direct communication network with Einstein–Podolsky–Rosen pairs. Phys. Lett. A 359, 359 (2006)ADSzbMATHGoogle Scholar
  15. 15.
    Li, X.H., et al.: Quantum secure direct communication with quantum encryption based on pure entangled states. Chin. Phys. 16, 2149 (2007)ADSGoogle Scholar
  16. 16.
    Shi, J., Gong, Y.X., Xu, P., Zhu, S.N., Zhang, Y.B.: Quantum secure direct communication by using three-dimensional hyperentanglement. Commun. Theor. Phys. 56, 831 (2011)ADSzbMATHGoogle Scholar
  17. 17.
    Wang, T.J., Li, T., Du, F.F., Deng, F.G.: High-capacity quantum secure direct communication based on quantum hyperdense coding with hyperentanglement. Chin. Phys. Lett. 28, 040305 (2011)ADSGoogle Scholar
  18. 18.
    Gu, B., et al.: Robust quantum secure direct communication with a quantum one-time pad over a collective-noise channel. Sci. China Phys. Mech. Astron. 54, 942 (2011)ADSGoogle Scholar
  19. 19.
    Gu, B., et al.: A two-step quantum secure direct communication protocol with hyperentanglement. Chin. Phys. B 20, 100309 (2011)ADSGoogle Scholar
  20. 20.
    Wu, F.Z., Yang, G.J., Wang, H.B., Xiong, J., Alzahrani, F., Hobiny, A., Deng, F.G.: High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states. Sci. China Phys. Mech. Astron. 60, 120313 (2017)ADSGoogle Scholar
  21. 21.
    Hu, J.Y., Yu, B., Jing, M.Y., Xiao, L.T., Jia, S.T., Qin, G.Q., Long, G.L.: Experimental quantum secure directcommunication with single photons. Light Sci. Appl. 5, e16144 (2016)Google Scholar
  22. 22.
    Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)ADSGoogle Scholar
  23. 23.
    Zhu, F., Zhang, W., Sheng, Y.B., Huang, Y.D.: Experimental long-distance quantum secure direct communication. Sci. Bull. 62, 1519 (2017)Google Scholar
  24. 24.
    Yuan, H., Zhou, J., Zhang, G., Wei, X.F.: Two-step efficient deterministic secure quantum communication using three-qubit W state. Commun. Theor. Phys. 55, 984 (2011)ADSzbMATHGoogle Scholar
  25. 25.
    Yuan, H., Song, J., Zhou, J., Zhang, G., Wei, X.F.: High-capacity deterministic secure four-qubit W state protocol for quantum communication based on order rearrangement of particle pairs. Int. J. Theor. Phys. 50, 2403 (2011)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Situ, H.Z., Qiu, D.W.: Simultaneous dense coding. J. Phys. A Math. Theor. 43, 055301 (2010)ADSMathSciNetzbMATHGoogle Scholar
  27. 27.
    Huang, Z.M., Zhang, C., Situ, H.Z.: Performance analysis of simultaneous dense coding protocol under decoherence. Quant. Inf. Process. 16, 227 (2017)ADSMathSciNetzbMATHGoogle Scholar
  28. 28.
    Huang, Z.M., Ye, Y.Y., Luo, D.R.: Simultaneous dense coding affected by fluctuating massless scalar field. Quantum Inf. Process. 17, 101 (2018)ADSMathSciNetzbMATHGoogle Scholar
  29. 29.
    Hillery, M., Buzek, V., Berthiaunie, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)ADSMathSciNetzbMATHGoogle Scholar
  30. 30.
    Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)ADSGoogle Scholar
  31. 31.
    Deng, F.G., Zhou, H.Y., Long, G.L.: Circular quantum secret sharing. J. Phys. A Math. Gen. 39, 14089 (2006)ADSMathSciNetzbMATHGoogle Scholar
  32. 32.
    Qin, H.W., Zhu, X.H., Dai, Y.W.: \((t, n)\) threshold quantum secret sharing using the phase shift operation. Quantum Inf. Proc. 15, 2997 (2015)ADSMathSciNetzbMATHGoogle Scholar
  33. 33.
    Qin, H.W., Dai, Y.W.: Proactive quantum secret sharing. Quantum Inf. Proc. 14, 4237 (2015)ADSMathSciNetzbMATHGoogle Scholar
  34. 34.
    Lu, H., et al.: Secret sharing of a quantum state. Phys. Rev. Lett. 117, 030501 (2016)ADSGoogle Scholar
  35. 35.
    Bai, C.M., et al.: Quantum secret sharing using the d-dimensional GHZ state. Quantum Inf. Process. 16, 59 (2017)ADSMathSciNetzbMATHGoogle Scholar
  36. 36.
    Wang, J., et al.: Quantum-secret-sharing scheme based on local distinguishability of orthogonal multiqudit entangled states. Phys. Rev. A 95, 022320 (2017)ADSGoogle Scholar
  37. 37.
    Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648 (1999)ADSGoogle Scholar
  38. 38.
    Lance, A.M., Symul, T., Bowen, W.P., Sanders, B.C., Lam, P.K.: Tripartite quantum state sharing. Phys. Rev. Lett. 92, 177903 (2004)ADSGoogle Scholar
  39. 39.
    Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs. Phys. Rev. A 72, 044301 (2005)ADSGoogle Scholar
  40. 40.
    Gordon, G., Rigolin, G.: Generalized quantum-state sharing. Phys. Rev. A 73, 062316 (2006)ADSGoogle Scholar
  41. 41.
    Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements. Euro. Phys. J. D 39, 459 (2006)ADSGoogle Scholar
  42. 42.
    Li, X.H., Zhou, P., Li, C.Y., Zhou, H.Y., Deng, F.G.: Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state. J. Phys. B At. Mol. Opt. Phys. 39, 1975 (2006)ADSGoogle Scholar
  43. 43.
    Wang, Z.Y., Liu, Y.M., Wang, D., Zhang, Z.J.: Generalized quantum state sharing of arbitrary unknown two-qubit state. Opt. Commun. 276, 322 (2007)ADSGoogle Scholar
  44. 44.
    Dong, L., Xiu, X.M., Gao, Y.J.: Multiparty quantum state sharing of M-qubit state. Int. J. Mod. Phys. C 18, 1699 (2007)ADSMathSciNetzbMATHGoogle Scholar
  45. 45.
    Man, Z.X., Xia, Y.J., An, N.B.: Quantum state sharing of an arbitrary multiqubit state using nonmaximally entangled GHZ states. Euro. Phys. J. D 42, 333 (2007)ADSMathSciNetGoogle Scholar
  46. 46.
    Hou, K., Li, Y.B., Shi, S.H.: Quantum state sharing with a genuinely entangled five-qubit state and Bell-state measurements. Opt. Commun. 283, 1961 (2010)ADSGoogle Scholar
  47. 47.
    Shi, R., Huang, L., Yang, W., Zhong, H.: Multi-party quantum state sharing of an arbitrary two-qubit state with Bell states. Quantum Inf. Proc. 10, 231 (2011)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Nguyen, B.A.: Quantum dialogue. Phys. Lett. A 328, 6 (2004)ADSMathSciNetzbMATHGoogle Scholar
  49. 49.
    Shi, G.F., Xi, X.Q., Hu, M.L., Yue, R.H.: Quantum secure dialogue by using single photons. Opt. Commun. 283, 1984 (2010)ADSGoogle Scholar
  50. 50.
    Gao, G.: Two quantum dialogue protocols without information leakage. Opt. Commun. 283, 2288 (2010)ADSGoogle Scholar
  51. 51.
    Zhou, N.R., Wu, G.T., Gong, L.H., Liu, S.Q.: Secure quantum dialogue protocol based on W states without information leakage. Int. J. Theor. Phys. 52, 3204 (2013)MathSciNetzbMATHGoogle Scholar
  52. 52.
    Yin, A.H., Tang, Z.H.: Two-step efficient quantum dialogue with three-particle entangled W state. Int. J. Theor. Phys. 53, 2760 (2014)zbMATHGoogle Scholar
  53. 53.
    Zheng, C., Long, G.F.: Quantum secure direct dialogue using Einstein–Podolsky–Rosen pairs. Sci. China Phys. Mech. Astron. 57, 1238 (2014)ADSGoogle Scholar
  54. 54.
    Gao, G.F., et al.: Preparation of Greenberger–Horne–Zeilinger and W states on a one-dimensional Ising chain by global control. Phys. Rev. A 87, 032335 (2013)ADSGoogle Scholar
  55. 55.
    Riebe, M., et al.: Deterministic quantum teleportation with atoms. Nature 429, 734 (2004)ADSGoogle Scholar
  56. 56.
    Ikram, M., Zhu, S.Y., Zubairy, M.S.: Quantum teleportation of an entangled state. Phys. Rev. A 62, 022307 (2000)ADSMathSciNetGoogle Scholar
  57. 57.
    Boschi, D., et al.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 80, 1121 (1998)ADSMathSciNetzbMATHGoogle Scholar
  58. 58.
    Brunel, C., Lounis, B., Tamarat, P., et al.: Triggered source of single photons based on controlled single molecule fluorescence. Phys. Rev. Lett. 83, 2722 (1999)ADSGoogle Scholar
  59. 59.
    Kraus, K., Böhm, A., Dollard, J.D. et al.: States, Effects, and Operations Fundamental Notions of Quantum Theory. Lecture Notes in Physics, vol. 190 (1983)Google Scholar
  60. 60.
    Gorini, V., Kossakowski, A., Surdarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821 (1976)ADSMathSciNetGoogle Scholar
  61. 61.
    Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976)ADSMathSciNetzbMATHGoogle Scholar
  62. 62.
    Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)zbMATHGoogle Scholar
  63. 63.
    Li, X.H., et al.: Faithful qubit transmission against collective noise without ancillary qubits. Appl. Phys. Lett. 91, 144101 (2007)ADSGoogle Scholar
  64. 64.
    Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)ADSGoogle Scholar
  65. 65.
    Pan, J.W., Simon, C., Zellinger, A.: Entanglement purification for quantum communication. Nature 410, 1067 (2001)ADSGoogle Scholar
  66. 66.
    Sheng, Y.B., et al.: Efficient polarization entanglement purification based on parametric down conversion sources with cross-Kerr nonlinearity. Phys. Rev. A 77, 042308 (2008)ADSGoogle Scholar
  67. 67.
    Sheng, Y.B., et al.: Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A 81, 032307 (2010)ADSGoogle Scholar
  68. 68.
    Li, X.H.: Deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82, 044304 (2010)ADSGoogle Scholar
  69. 69.
    Sheng, Y.B., et al.: One-step deterministic polarization entanglement purification using spatial entanglement. Phys. Rev. A 82, 044305 (2010)ADSGoogle Scholar
  70. 70.
    Deng, F.G.: Efficient multipartite entanglement purification with the entanglement link from a subspace. Phys. Rev. A 84, 052312 (2011)ADSGoogle Scholar
  71. 71.
    Sheng, Y.B., Zhou, L.: Deterministic polarization entanglement purification using time-bin entanglement. Laser Phys. Lett. 11, 085203 (2014)ADSGoogle Scholar
  72. 72.
    Ren, B.C., et al.: Hyper entanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities. Laser Phys. Lett. 10, 115201 (2013)ADSGoogle Scholar
  73. 73.
    Ren, B.C., et al.: Two-step hyperentanglement purification with the quantum-state-joining method. Phys. Rev. A 90, 052309 (2014)ADSGoogle Scholar
  74. 74.
    Wang, G.Y., et al.: Hyperentanglement purification for two-photon six-qubit quantum systems. Phys. Rev. A 94, 032319 (2016)ADSGoogle Scholar
  75. 75.
    Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046–2052 (1996)ADSGoogle Scholar
  76. 76.
    Zhao, Z., Pan, J.W., Zhan, M.S.: Practical scheme for entanglement concentration. Phys. Rev. A 64, 014301 (2001)ADSGoogle Scholar
  77. 77.
    Sheng, Y.B., et al.: Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys. Rev. A 77, 062325 (2008)ADSGoogle Scholar
  78. 78.
    Sheng, Y.B., Zhou, L., Zhao, S.M., Zheng, B.Y.: Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys. Rev. A 85, 012307 (2012)ADSGoogle Scholar
  79. 79.
    Deng, F.G.: Optimal nonlocal multipartite entanglement concentration based on projection measurements. Phys. Rev. A 85, 022311 (2012)ADSGoogle Scholar
  80. 80.
    Ren, B.C., et al.: Hyperentanglement concentration for two-photon four-qubit systems with linear optics. Phys. Rev. A 88, 012302 (2013)ADSGoogle Scholar
  81. 81.
    Ren, B.C., Long, G.L.: General hyperentanglement concentration for photon systems assisted by quantum dot spins inside optical microcavities. Opt. Express 22, 6547 (2014)ADSGoogle Scholar
  82. 82.
    Ren, B.C., Long, G.L.: Highly efficient hyperentanglement concentration with two steps assisted by quantum swap gates. Sci. Rep. 5, 16444 (2015)ADSGoogle Scholar
  83. 83.
    Ren, B.C., et al.: Hyperentanglement concentration of nonlocal two-photon six-qubit systems with linear optics. Ann. Phys. 385, 86–94 (2017)ADSMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Economics and ManagementWuyi UniversityJiangmenChina
  2. 2.College of Mathematics and InformaticsSouth China Agricultural UniversityGuangzhouChina

Personalised recommendations