Exploration of entropic uncertainty relation for two accelerating atoms immersed in a bath of electromagnetic field

  • Zhiming HuangEmail author
  • Haozhen Situ


The uncertainty principle as an elementary theory of quantum mechanics plays an important role in quantum information science. In this paper, we study the dynamics of quantum-memory-assisted entropic uncertainty relation for two accelerating atoms coupled with a bath of fluctuating electromagnetic field. The master equation that the system evolution obeys is firstly derived. We find that the mixedness is bound up with the entropic uncertainty. For equilibrium state, the tightness of uncertainty vanishes. For the initial maximum entangled state, the tightness of uncertainty experiences a slight increase and then declines to zero with evolution time. It is found that the greater acceleration makes the uncertainty faster reach a maximum value and stable value. For a fixed acceleration, the uncertainty with different two-atom separations converges to a fixed value. Furthermore, we utilize weak measurement reversal to manipulate the entropic uncertainty. Our explorations may suggest a method of probing entanglement, acceleration effect and vacuum fluctuation effect with entropic uncertainty.


Entropic uncertainty Mixedness Dynamics Fluctuating electromagnetic field Weak measurement reversal 



The work is supported by the National Natural Science Foundation of China (61871205), the Innovation Project of Department of Education of Guangdong Province (2017KTSCX180), the Jiangmen Science and Technology Plan Project for Basic and Theoretical Research (2018JC01010), the Young Science and Technology Talent Growth Fund Project of Education Department of Guizhou Province of China (Qian Jiao He KY Zi[2018]426), the Major Special Fund Project of Research and Innovation for Qiannan Normal university for Nationalities of China (QNSY2018BS015), the Industrial Technology Foundation of Qiannan State of China (Qiannan Ke He Gong Zi (2017) 9 Hao) and the Scientific Research Foundation for High-level Talents of Qiannan Normal University for Nationalities (qnsyrc201716).


  1. 1.
    Heisenberg, W.: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 43, 172 (1927)ADSCrossRefGoogle Scholar
  2. 2.
    Coles, P.J., Berta, M., Tomamichel, M., Wehner, S.: Entropic uncertainty relations and their applications. Rev. Mod. Phys. 89, 015002 (2017)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Kennard, E.H.: Zur Quantenmechanik einfacher Bewegungstypen. Z. Phys. 44, 326 (1927)ADSCrossRefGoogle Scholar
  4. 4.
    Robertson, H.P.: The uncertainty principle. Phys. Rev. 34, 163 (1929)ADSCrossRefGoogle Scholar
  5. 5.
    Deutsch, D.: Uncertainty in quantum measurements. Phys. Rev. Lett. 50, 631 (1983)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Kraus, K.: Complementary observables and uncertainty relations. Phys. Rev. D 35, 3070 (1987)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Maassen, H., Uffnk, J.B.M.: Generalized entropic uncertainty relations. Phys. Rev. Lett. 60, 1103 (1988)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Bialynicki-Birula, I.: Formulation of the uncertainty relations in terms of the Rényi entropies. Phys. Rev. A 74, 052101 (2006)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Coles, P.J., Piani, M.: Improved entropic uncertainty relations and information exclusion relations. Phys. Rev. A 89, 022112 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    Renes, J.M., Boileau, J.C.: Conjectured strong complementary information tradeoff. Phys. Rev. Lett. 103, 020402 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    Berta, M., Christandl, M., Colbeck, R., Renes, J.M., Renner, R.: The uncertainty principle in the presence of quantum memory. Nat. Phys. 6, 659 (2010)CrossRefGoogle Scholar
  12. 12.
    Kurzyk, D., Pawela, Ł., Puchała, Z.: Conditional entropic uncertainty relations for Tsallis entropies. Quantum Inf. Process. 17, 193 (2018)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Hu, M.L., Fan, H.: Quantum-memory-assisted entropic uncertainty principle, teleportation, and entanglement witness in structured reservoirs. Phys. Rev. A 86, 032338 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Zou, H.M., et al.: The quantum entropic uncertainty relation and entanglement witness in the two-atom system coupling with the non-Markovian environments. Phys. Scr. 89, 115101 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    Hu, M.L., Fan, H.: Competition between quantum correlations in the quantum-memory-assisted entropic uncertainty relation. Phys. Rev. A 87, 022314 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Hu, M.L., Fan, H.: Upper bound and shareability of quantum discord based on entropic uncertainty relations. Phys. Rev. A 88, 014105 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    Pati, A.K., et al.: Quantum discord and classical correlation can tighten the uncertainty principle in the presence of quantum memory. Phys. Rev. A 86, 042105 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    Mondal, D., Pati, A.K.: Quantum speed limit for mixed states using an experimentally realizable metric. Phys. Lett. A 380, 1395 (2016)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Pires, D.P., Cianciaruso, M., Céleri, L.C., Adesso, G., Soares-Pinto, D.O.: Generalized geometric quantum speed limits. Phys. Rev. X 6, 021031 (2016)Google Scholar
  20. 20.
    Hall, M.J.W., Wiseman, H.M.: Heisenberg-style bounds for arbitrary estimates of shift parameters including prior information. New J. Phys. 14, 033040 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    Tomamichel, M., Renner, R.: Uncertainty relation for smooth entropies. Phys. Rev. Lett. 106, 110506 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    Coles, P.J., Colbeck, R., Yu, L., Zwolak, M.: Uncertainty relations from simple entropic properties. Phys. Rev. Lett. 108, 210405 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    Berta, M., Wehner, S., Wilde, M.M.: Entropic uncertainty and measurement reversibility. New J. Phys. 18, 073004 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    Adabi, F., Salimi, S., Haseli, S.: Tightening the entropic uncertainty bound in the presence of quantum memory. Phys. Rev. A 93, 062123 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    Liu, S., Mu, L.Z., Fan, H.: Entropic uncertainty relations for multiple measurements. Phys. Rev. A 91, 042133 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    Xu, Z.Y., Yang, W.L., Feng, M.: Quantum-memory-assisted entropic uncertainty relation under noise. Phys. Rev. A 86, 012113 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    Wang, D., et al.: Entropic uncertainty relations for Markovian and non-Markovian processes under a structured bosonic reservoir. Sci. Rep. 7, 1066 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    Huang, Z.M.: Quantum-memory-assisted entropic uncertainty in spin models with Dzyaloshinskii–Moriya interaction. Laser Phys. Lett. 15, 025203 (2018)ADSCrossRefGoogle Scholar
  29. 29.
    Wang, D., et al.: Quantum-memory-assisted entropic uncertainty relation in a Heisenberg XYZ chain with an inhomogeneous magnetic field. Laser Phys. Lett. 14, 065203 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    Huang, A.J., et al.: Exploring entropic uncertainty relation in the Heisenberg XX model with inhomogeneous magnetic field. Quantum Inf. Process. 16, 204 (2017)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Hu, J.W., Yu, H.W.: Entanglement dynamics for uniformly accelerated two-level atoms. Phys. Rev. A 91, 012327 (2015)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Yang, Y.Q., Hu, J.W., Yu, H.W.: Entanglement dynamics for uniformly accelerated two-level atoms coupled with electromagnetic vacuum fluctuations. Phys. Rev. A 94, 032337 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    Jia, L.J., Tian, Z.H., Jing, J.L.: Entropic uncertainty relation in de Sitter space. Ann. Phys. 353, 37 (2015)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    Zhang, S.Y., Fang, M.F., Yu, M.: Controlling of entropic uncertainty in qubits system under the generalized amplitude damping channel via weak measurements. Int. J. Theor. Phys. 55, 1824 (2016)CrossRefGoogle Scholar
  35. 35.
    Wang, D., et al.: Entropic uncertainty for spin-1/2 XXX chains in the presence of inhomogeneous magnetic fields and its steering via weak measurement reversals. Laser Phys. Lett. 14, 095204 (2017)ADSCrossRefGoogle Scholar
  36. 36.
    Huang, A.J., Shi, J.D., Wang, D., Ye, L.: Steering quantum-memory-assisted entropic uncertainty under unital and nonunital noises via filtering operations. Quantum Inf. Process. 16, 46 (2017)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Yu, M., Fang, M.F.: Controlling the quantum-memory-assisted entropic uncertainty relation by quantum-jump-based feedback control in dissipative environments. Quantum Inf. Process. 16, 213 (2017)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    Peters, N.A., Wei, T.C., Kwiat, P.G.: Mixed state sensitivity of several quantum information benchmarks. Phys. Rev. A 70, 052309 (2004)ADSCrossRefGoogle Scholar
  39. 39.
    Sun, Q., Al-Amri, M., Davidovich, L., Suhail Zubairy, M.: Reversing entanglement change by a weak measurement. Phys. Rev. A 82, 052323 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    Huang, Z.M., Zhang, C.: Protecting quantum correlation from correlated amplitude damping channel. Braz. J. Phys. 47, 400 (2017)ADSCrossRefGoogle Scholar
  41. 41.
    Huang, Z.M., Situ, H.Z.: Optimal protection of quantum coherence in noisy environment. Int. J. Theor. Phys. 56, 503 (2017)CrossRefGoogle Scholar
  42. 42.
    Huang, Z.M., Rong, Z.B., Zou, X.F., Situ, H.Z., Zhao, L.H.: Protecting qutrit quantum coherence. Int. J. Theor. Phys. 56, 2540 (2017)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Gorini, V., Kossakowski, A., Surdarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821 (1976)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)zbMATHGoogle Scholar
  46. 46.
    Huang, Z.M., Qiu, D.W., Mateus, P.: Geometry and dynamics of one-norm geometric quantum discord. Quantum Inf. Process. 15, 301 (2016)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    Ali, M., Rau, A.R.P., Alber, G.: Quantum discord for two-qubit X states. Phys. Rev. A 81, 042105 (2010)ADSCrossRefGoogle Scholar
  48. 48.
    Chen, Q., Zhang, C., Yu, X., Yi, X.X., Oh, C.H.: Quantum discord of two-qubit X states. Phys. Rev. A 84, 042313 (2011)ADSCrossRefGoogle Scholar
  49. 49.
    Li, B., Wang, Z.X., Fei, S.M.: Quantum discord and geometry for a class of two-qubit states. Phys. Rev. A 83, 022321 (2011)ADSCrossRefGoogle Scholar
  50. 50.
    Jafari, R., Kargarian, M., Langari, A., Siahatgar, M.: Phase diagram and entanglement of the Ising model with Dzyaloshinskii–Moriya interaction. Phys. Rev. B. 78, 214414 (2008)ADSCrossRefGoogle Scholar
  51. 51.
    Ma, F.W., Liu, S.X., Kong, X.M.: Quantum entanglement and quantum phase transition in the XY model with staggered Dzyaloshinskii–Moriya interaction. Phys. Rev. A 84, 042302 (2011)ADSCrossRefGoogle Scholar
  52. 52.
    Song, X.K., Wu, T., Ye, L.: Renormalization of quantum discord and Bell nonlocality in the XXZ model with Dzyaloshinskii–Moriya interaction. Ann. Phys. 349, 220 (2014)ADSCrossRefGoogle Scholar
  53. 53.
    Huang, Z.M.: Dynamics of quantum correlation and coherence in de Sitter universe. Quantum Inf. Process. 16, 207 (2017)ADSMathSciNetCrossRefGoogle Scholar
  54. 54.
    Huang, Z.M., Tian, Z.H.: Dynamics of quantum entanglement in de Sitter spacetime and thermal Minkowski spacetime. Nucl. Phys. B 923, 458 (2017)ADSMathSciNetCrossRefGoogle Scholar
  55. 55.
    Huang, Z.M., Tian, Z.H.: Dynamics of quantum correlation in de Sitter spacetime. J. Phys. Soc. Jpn. 86, 094003 (2017)ADSCrossRefGoogle Scholar
  56. 56.
    Huang, Z.M., Zhang, C., Zhang, W., Zhao, L.H.: Equivalence of quantum resource measures for X states. Int. J. Theor. Phys. 56, 3615 (2017)CrossRefGoogle Scholar
  57. 57.
    Huang, Z.M., Situ, H.Z.: Dynamics of quantum correlation and coherence for two atoms coupled with a bath of fluctuating massless scalar field. Ann. Phys. 377, 484 (2017)ADSCrossRefGoogle Scholar
  58. 58.
    Huang, Z.M.: Dynamics of quantum correlation of atoms immersed in a thermal quantum scalar fields with a boundary. Quantum Inf. Process. 17, 221 (2018)ADSMathSciNetCrossRefGoogle Scholar
  59. 59.
    Huang, Z.M., Situ, H.Z.: Quantum coherence behaviors of fermionic system in non-inertial frame. Quantum Inf. Process. 17, 95 (2018)ADSMathSciNetCrossRefGoogle Scholar
  60. 60.
    Huang, Z.M., Ye, Y.Y., Luo, D.R.: Simultaneous dense coding affected by fluctuating massless scalar field. Quantum Inf. Process. 17, 101 (2018)ADSMathSciNetCrossRefGoogle Scholar
  61. 61.
    Huang, Z.M.: Dynamics of entropic uncertainty for atoms immersed in thermal fluctuating massless scalar field. Quantum Inf. Process 17, 73 (2018)ADSMathSciNetCrossRefGoogle Scholar
  62. 62.
    Huang, Z.M.: Protecting quantum Fisher information in curved space–time. Eur. Phys. J. Plus 133, 101 (2018)CrossRefGoogle Scholar
  63. 63.
    Wang, G.Y., Li, T., Deng, F.G.: High-efficiency atomic entanglement concentration for quantum communication network assisted by cavity QED. Quantum Inf. Process. 14, 1305 (2015)ADSCrossRefGoogle Scholar
  64. 64.
    Yang, Z.G., Wu, T.T., Liu, J.M.: Remote state preparation via photonic Faraday rotation in low-Q cavities. Acta Phys. Sin. 65, 020302 (2016)Google Scholar
  65. 65.
    Unruh, W.G.: Notes on black-hole evaporation. Phys. Rev. D 14, 870 (1976)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Economics and ManagementWuyi UniversityJiangmenChina
  2. 2.College of Mathematics and InformaticsSouth China Agricultural UniversityGuangzhouChina

Personalised recommendations