Advertisement

Pairwise nonclassical correlations for superposition of Dicke states via local quantum uncertainty and trace distance discord

  • Youssef Khedif
  • Mohammed Daoud
Article
  • 21 Downloads

Abstract

The pairwise nonclassical correlations for two-qubit states, extracted from multi-qubit system with exchange symmetry and parity, are quantified by local quantum uncertainty and trace distance discord. The explicit expressions of local quantum uncertainty and geometric trace distance discord for Dicke states and their superpositions are given. A comparison between the two quantum correlations quantifiers is discussed.

Keywords

Pairwise nonclassical correlations Local quantum uncertainty Trace distance discord Dicke states 

References

  1. 1.
    Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1, 195 (1964)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  3. 3.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Gühne, O., Tóth, G.: Entanglement detection. Phys. Rep. 474, 1 (2009)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Horodecki, M., Oppenheim, J., Winter, A.: Partial quantum information. Nature 436, 673 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    Horodecki, M., Oppenheim, J., Winter, A.: Quantum state merging and negative information. Comm. Math. Phys. 269, 107 (2007)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Plenio, M.B., Virmani, S.: An introduction to entanglement measures. Quant. Inf. Comput. 7, 1 (2007)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Ferraro, A., Aolita, L., Cavalcanti, D., Cucchietti, F.M., Acín, A.: Almost all quantum states have nonclassical correlations. Phys. Rev. A 81, 052318 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A: Math. Gen. 34, 6899 (2001)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: Discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Dakić, B., Vedral, V., Brukner, Č.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Debarba, T., Maciel, T.O., Vianna, R.O.: Witnessed entanglement and the geometric measure of quantum discord. Phys. Rev. A 86, 024302 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Montealegre, J.D., Paula, F.M., Saguia, A., Sarandy, M.S.: One-norm geometric quantum discord under decoherence. Phys. Rev. A 87, 042115 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    Ciccarello, F., Tufarelli, T., Giovannetti, V.: Toward computability of trace distance discord. New J. Phys. 16, 013038 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    Girolami, D., Tufarelli, T., Adesso, G.: Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 110, 240402 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    Paris, M.G.A.: Quantum estimation for quantum technology. Int. J. Quant. Inf. 7, 125 (2009)CrossRefGoogle Scholar
  20. 20.
    Wigner, E.P., Yanasse, M.M.: Information contents of distributions. Proc. Natl. Acad. Sci. USA 49, 910 (1963)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Luo, S.: Wigner–Yanase Skew information and uncertainty relations. Phys. Rev. Lett. 91, 180403 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    Wang, S., Li, H., Lu, X., Long, G.-L.: Closed form of local quantum uncertainty and a sudden change of quantum correlations. quant-ph/ arXiv:1307.0576v2
  23. 23.
    Slaoui, A., Daoud, M., Ahl Laamara, R.: The dynamics of local quantum uncertainty and trace distance discord for two-qubit X states under decoherence: a comparative study. Quantum Inf. Process. 17, 178 (2018)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Wang, X., Mølmer, K.: Pairwise entanglement in symmetric multi-qubit systems. Eur. Phys. J. D 18, 385 (2002)ADSGoogle Scholar
  25. 25.
    Yin, X., Xi, Z., Lu, X.-M., Sun, Z., Wang, X.: Geometric measure of quantum discord for superpositions of Dicke states. J. Phys. B: At. Mol. Opt. Phys. 44, 245502 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    Ozawa, M.: Entanglement measures and the Hilbert–Schmidt distance. Phys. Lett. A 268, 158 (2000)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Vedral, V., Plenio, M.B., Rippin, M.A., Knight, P.L.: Quantifying entanglement. Phys. Rev. Lett. 78, 2275 (1997)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Dicke, R.H.: Coherence in spontaneous radiation processes. Phys. Rev. 93, 99 (1954)ADSCrossRefGoogle Scholar
  29. 29.
    Bergmann, M., Gühne, O.: Entanglement criteria for Dicke states. J. Phys. A: Math. Theor. 46, 385304 (2013)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Greenberger, D.M., Horne, M.A., Zeilinger, A.: Nonlocality of a single photon? Phys. Rev. Lett. 75, 2064 (1995)ADSCrossRefGoogle Scholar
  32. 32.
    Kiesel, N., Schmid, C., Tóth, G., Solano, E., Weinfurter, H.: Experimental observation of four-photon entangled dicke state with high fidelity. Phys. Rev. Lett. 98, 063604 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    Radcliffe, J.M.: Some properties of coherent spin states. J. Phys. A: Gen. Phys. 4, 313 (1971)ADSCrossRefGoogle Scholar
  34. 34.
    Daoud, M., Ahl Laamara, R., Kaydi, W.: Multipartite quantum correlations in even and odd spin coherent states. J. Phys. A: Math. Theor. 46, 395302 (2013)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Luo, S., Zhang, Q.: Informational distance on quantum-state space. Phys. Rev. A 69, 032106 (2004)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Bloch, F.: Nuclear Induction. Phys. Rev. 70, 460 (1946)ADSCrossRefGoogle Scholar
  37. 37.
    Fano, U.: Pairs of two-level systems. Rev. Mod. Phys. 55, 855 (1983)ADSCrossRefGoogle Scholar
  38. 38.
    Kedif, Y., Daoud, M.: Local quantum uncertainty and trace distance discord dynamics for two-qubit X states embedded in non-Markovian environment. Int. J. Mod. Phys. B 32, 1850218 (2018)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Paula, F.M., de Oliveira, T.R., Sarandy, M.S.: Geometric quantum discord through the Schatten 1-norm. Phys. Rev. A 87, 064101 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    Luo, S.: Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77, 022301 (2008)ADSCrossRefGoogle Scholar
  41. 41.
    Li, D., Li, X., Huang, H.: Stochastic local operations and classical communication properties of the n-qubit symmetric Dicke states. Europhys. Lett. 87, 20006 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    Chang, L., Luo, S.: Remedying the local ancilla problem with geometric discord. Phys. Rev. A 87, 062303 (2013)ADSCrossRefGoogle Scholar
  43. 43.
    Xi, Z.-J., Xiong, H.-N., Li, Y.-M., Wang, X.-G.: Pairwise quantum correlations for superpositions of dicke states. Commun. Theor. Phys. 57, 771 (2012)ADSCrossRefGoogle Scholar
  44. 44.
    Ma, Z.-H., Chen, Z.-H., Fanchini, F.F.: Multipartite quantum correlations in open quantum systems. New J. Phys. 15, 043023 (2013)ADSCrossRefGoogle Scholar
  45. 45.
    Okrasa, M., Walczak, Z.: Quantum discord and multipartite correlations. Europhys. Lett. 96, 60003 (2011)ADSCrossRefGoogle Scholar
  46. 46.
    Chakrabarty, I., Agrawal, P., Pati, A.K.: Quantum dissension: generalizing quantum discord for three-qubit states. Eur. Phys. J. D 65, 605 (2011)ADSCrossRefGoogle Scholar
  47. 47.
    Rulli, C.C., Sarandy, M.S.: Global quantum discord in multipartite systems. Phys. Rev. A 84, 042109 (2011)ADSCrossRefGoogle Scholar
  48. 48.
    Lipkin, H.J., Meshkov, N., Glick, A.J. : Validity of many-body approximation methods for a solvable model. (I). Exact solutions and perturbation theory. Nucl. Phys. 62 188 (1965)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of High Energy and Condensed Matter Physics, Department of Physics, Faculty of Sciences Aïn ChockUniversity Hassan IIMaarif, CasablancaMorocco
  2. 2.Abdus Salam International Centre for Theoretical PhysicsTriesteItaly

Personalised recommendations