Performance analysis of the satellite-to-ground continuous-variable quantum key distribution with orthogonal frequency division multiplexed modulation

  • Wei Zhao
  • Qin LiaoEmail author
  • Duan Huang
  • Ying Guo


Continuous-variable quantum key distribution (CVQKD) is aiming at widespread application and adoption in different scenarios, and thus, the application of satellite-to-ground link may play a vital role in establishing the global secure quantum communications. In this paper, we propose an improved tunable CVQKD scheme for the satellite-to-ground free space optical (FSO) link in an orthogonal frequency division multiplexing (OFDM) system. The OFDM-based CVQKD can effectively suppress the random fading effect that resulted from the atmospheric channel since it divides the initial transmission channel into multi-subcarriers working in parallel so as to compensate the weakness of single-channel transmission of the signals. Moreover, the influence of the intensity scintillation, atmospheric transmittance and phase noise caused by atmospheric turbulence is involved in security analysis. The results reveal that satellite-to-ground CVQKD system can reduce the atmosphere influence in an OFDM system. Compared with the single-channel CVQKD in the FSO link, the secret key rate is improved with the OFDM technique within a certain range of subcarrier numbers. Nevertheless, the reduction of symbols per channel cannot make the asymptotic assumption due to the limitation of technology and devices.


Continuous-variable quantum key distribution Satellite-to-ground link Orthogonal frequency division multiplexing technique 



This work is supported by the Fundamental Research Funds for the Central Universities of Central South University (Grant No. 2018zzts539) and the National Natural Science Foundation of China (Grant Nos. 61379153, 61572529).

Supplementary material


  1. 1.
    Weedbrook, C., Pirandola, S., García-Patrón, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H.: Gaussian quantum information. Rev. Mod. Phys. 84, 621–669 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    Gisin, N., Thew, R.: Quantum communication. Nat. Photonics 55, 298–303 (2011)Google Scholar
  3. 3.
    Pirandola, S., Mancini, S., Lloyd, S., Braunstein, S.L.: Continuous variable quantum cryptography using two-way quantum communication. Nat. Phys. 5, 726–730 (2006)Google Scholar
  4. 4.
    Huang, D., Huang, P., Lin, D., Zeng, G.: Long-distance continuous-variable quantum key distribution by controlling excess noise. Sci. Rep. 6, 19201 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    Shor, P.W., Preskill, J.: Simple proof of security of the bb84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    Pomerene, A., Starbuck, A.L., Lentine, A.L., Long, C.M., Derose, C.T., Trotter, D.C.: Silicon photonic transceiver circuit for high-speed polarization-based discrete variable quantum key distribution. Opt. Express 25, 12282 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    Huang, P., He, G., Fang, J., Zeng, G.: Performance improvement of continuous-variable quantum key distribution via photon subtraction. Phys. Rev. A 87, 530–537 (2013)Google Scholar
  8. 8.
    Fang, J., Huang, P., Zeng, G.: Multichannel parallel continuous-variable quantum key distribution with gaussian modulation. Phys. Rev. A 89, 022315 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    Liao, Q., Guo, Y., Huang, D., Huang, P., Zeng, G.: Long-distance continuous-variable quantum key distribution using non-gaussian state-discrimination detection. New J. Phys. 20, 2 (2017)Google Scholar
  10. 10.
    Jouguet, P., Kunzjacques, S., Leverrier, A., Grangier, P., Diamanti, E.: Experimental demonstration of continuous-variable quantum key distribution over 80 km of standard telecom fiber. Nat. Photonics 7, 378–381 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    Huang, D., Lin, D., Wang, C., Liu, W., Fang, S., Peng, J.: Continuous-variable quantum key distribution with 1 mbps secure key rate. Opt. Express 23, 17511–17519 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    Vasylyev, D., Semenov, A.A., Vogel, W., Günthner, K., Thurn, A., Bayraktar, O., Marquardt, C.: Free-space quantum links under diverse weather conditions. Phys. Rev. A 96, 043856 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    Liao, S.K., Cai, W.Q., Liu, W.Y., Zhang, L., Li, Y., Ren, J.G.: Satellite-to-ground quantum key distribution. Nature 549, 43 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    Zhang, H., Mao, Y., Huang, D., Li, J.W., Zhang, L., Guo, Y.: Security analysis of orthogonal-frequency-division-multiplexing-based continuous-variable quantum key distribution with imperfect modulation. Phys. Rev. A 97, 052328 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    Wang, Y., Wang, D., Ma, J.: On the performance of coherent ofdm systems in free-space optical communications. IEEE. Photon. J. 7, 1–10 (2015)Google Scholar
  16. 16.
    Armstrong, J.: OFDM for optical communications. J. Lightw. Technol. 27, 189–204 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    Bahrani, S., Razavi, M., Salehi, J.A.: Orthogonal frequency-division multiplexed quantum key distribution. J. Lightw. Technol. 33, 4687–4698 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    Jin, X.M., Ren, J.G., Yang, B., Yi, Z.H., Zhou, F., Xu, X.F.: Experimental free-space quantum teleportation. Nat. Photonics 4, 376–381 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Alhabash, A., Andrews, L.C.: New mathematical model for the intensity pdf of a laser beam propagating through turbulent media. Opt. Eng. 40, 1554–1562 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    Bekkali, A., Naila, C.B., Kazaura, K., Wakamori, K., Matsumoto, M.: Transmission analysis of ofdm-based wireless services over turbulent radio-on-fso links modeled by Gamma–Gamma distribution. IEEE. Photon. J. 2, 510–520 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    Bai, F., Su, Y., Sato, T.: Performance analysis of polarization modulated directdetection optical cdma systems over turbulent fso linksmodeled by the gamma-gamma distribution. Photonics 2, 139–155 (2015)CrossRefGoogle Scholar
  22. 22.
    Wang, Y., Wang, D., Ma, J.: Performance analysis of multihop coherent ofdm free-space optical communication systems. Opt. Commun. 376, 35–40 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    Qing, C., Wu, X., Li, X., Zhu, W., Qiao, C., Rao, R.: Use of weather research and forecasting model outputs to obtain near-surface refractive index structure constant over the ocean. Opt. Express 24, 13303 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    Paterson, C.: Atmospheric turbulence and orbital angular momentum of single photons for optical communication. Phys. Rev. Lett. 94, 153901 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    Vasylyev, D.Y., Semenov, A.A., Vogel, W.: Toward global quantum communication: beam wandering preserves nonclassicality. Phys. Rev. Lett. 108, 220501 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    Vasylyev, D., Semenov, A.A., Vogel, W.: Atmospheric quantum channels with weak and strong turbulence. Phys. Rev. Lett. 117, 090501 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    Glauber, R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766 (1963)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Sudarshan, E.C.G.: Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys Rev. Lett. 10, 277–279 (1963)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Usenko, V.C., Heim, B., Peuntinger, C., Wittmann, C., Marquardt, C., Leuchs, G.: Entanglement of gaussian states and the applicability to quantum key distribution over fading channels. New J. Phys. 14, 93048 (2012)CrossRefGoogle Scholar
  30. 30.
    Gappmair, W., Flohberger, M.: Error performance of coded fso links in turbulent atmosphere modeled by gamma-gamma distributions. IEEE Trans. Wirel. Commun. 8, 2209–2213 (2009)CrossRefGoogle Scholar
  31. 31.
    Xie, G., Wang, F., Dang, A., Guo, H.: A novel polarization-multiplexing system for free-space optical links. IEEE Photon. Technol. Lett. 23, 1484–1486 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    Gyongyosi, L.: Subcarrier domain of multicarrier continuous-variable quantum key distribution. Mathematics 1, 1–25 (2013)Google Scholar
  33. 33.
    Gyongyosi, L.: Diversity extraction for multicarrier continuous-variable quantum key distribution. In: Signal Processing Conference, pp. 478–482 (2016)Google Scholar
  34. 34.
    Gyongyosi, L.: Adaptive multicarrier quadrature division modulation for continuous-variable quantum key distribution. In: Proceedings of SPIE, p. 912307 (2014)Google Scholar
  35. 35.
    García-Patrón, R., Cerf, N.J.: Unconditional optimality of gaussian attacks against continuous-variable quantum key distribution. Phys. Rev. Lett. 97, 190503 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    Navascués, M., Acín, A.: Security bounds for continuous variables quantum key distribution. Phys. Rev. Lett. 94, 020505 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    Pirandola, S., Braunstein, S.L., Lloyd, S.: Characterization of collective gaussian attacks and security of coherent-state quantum cryptography. Phys. Rev. Lett. 101, 200504 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    Guo, Y., Liao, Q., Wang, Y., Huang, D., Huang, P., Zeng, G.: Performance improvement of continuous-variable quantum key distribution with an entangled source in the middle via photon subtraction. Phys. Rev. A 95, 032304 (2017)ADSCrossRefGoogle Scholar
  39. 39.
    Gyongyosi, L.: Distribution statistics and random matrix formalism of multicarrier continuous-variable quantum key distribution. Mathematics 1, 1–47 (2014)MathSciNetGoogle Scholar
  40. 40.
    Gyongyosi, L.: Security thresholds of multicarrier continuous-variable quantum key distribution. Mathematics 1, 1–58 (2014)MathSciNetGoogle Scholar
  41. 41.
    Gyongyosi, L.: Adaptive multicarrier quadrature division modulation for continuous-variable quantum key distribution. In: Proceedings of SPIE, vol. 9123, pp. 1–37 (2013)Google Scholar
  42. 42.
    Beland, R.R., Brown, J.H.: A deterministic temperature model for stratospheric optical turbulence. Phys. Scripta. 37, 419–423 (1988)ADSCrossRefGoogle Scholar
  43. 43.
    Berrisford, P., Kallberg, P., Kobayashi, S., Dee, D., Uppala, S., Simmons, A.J.: Atmospheric conservation properties in ERA-Interim. Q. J. R. Meteorol. Soc. 137, 1381–1399 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    Gatto, M.A., Seery, J.B.: Numerical evaluation of the modified bessel functions i, and k. Comput. Math. Appl. 7, 203–209 (1981)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E.: On the lambert w function. Adv. Comput. Math. 5, 329–359 (1996)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Newman, M.E.J., Barkema, G.T.: Monte carlo methods in statistical physics. Top. Curr. Phys. 46, 252–253 (1999)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Information Science and EngineeringCentral South UniversityChangshaChina
  2. 2.School of Electrical and Electronic EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations