Advertisement

Real-time selection for free-space measurement device independent quantum key distribution

  • Zhuo-Dan Zhu
  • Dong Chen
  • Shang-Hong Zhao
  • Qin-Hui Zhang
  • Jun-Hua Xi
Article
  • 30 Downloads

Abstract

In consideration of the time-dependent transmittance caused by atmospheric turbulence, we combine real-time selection (RTS) method with measurement device independent quantum key distribution (MDI-QKD). The modified scheme filters out the intervals with high channel transmittance and thus in turn increases the secure key rate. The optimal threshold of post-selection is determined by an iterative algorithm in advance, which balances the decrease in the total number of signals and the increase in average transmittance. Simulation results show that our modified scheme has apparent advances in both maximum tolerant loss and secure key rate compared to the original MDI-QKD protocol. The MDI-QKD with RTS even performs better when the level of turbulence becomes larger. Furthermore, the modified scheme is more stable against the statistical fluctuation as well.

Keywords

Quantum key distribution Measurement device independent quantum key distribution Atmospheric turbulence 

Notes

Acknowledgements

C. Dong is supported by the National Natural Science Foundation of China (Grant No. 11704412). C. Dong is supported by the Foundation of National University of Defense and Technology (Grant No. ZK17-02-09).

References

  1. 1.
    Lütkenhaus, N., Shields, A.: Focus on quantum cryptography: theory and practice. New J. Phys. 11(4), 300–310 (2009)CrossRefGoogle Scholar
  2. 2.
    Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    Mayers, D.: Unconditional security in quantum cryptography. ACM 48, 351–406 (2001)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Gottesman, D., Lo. H.K., Lütkenhaus, N., et al.: Security of quantum key distribution with imperfect devices. Information Theory, 2004. In: Proceedings. International Symposium on ISIT 2004. IEEE, p. 136 (2005)Google Scholar
  5. 5.
    Gottesman, D., Lo, H.K., Lutkenhaus, N., et al.: Security of quantum key distribution with imperfect devices. Quantum Inf. Comput. 4(5), 325–360 (2004)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Takesue, H., Nam, S.W., Zhang, Q., et al.: Quantum key distribution over a 40 dB channel loss using superconducting single-photon detectors. Nat. Photonics 1(17), 5078–5081 (2007)Google Scholar
  7. 7.
    Braunstein, S.L., Pirandola, S.: Measurement device independent quantum key distribution. Phys. Rev. Lett. 108(13), 4089–4091 (2012)CrossRefGoogle Scholar
  8. 8.
    Brassard, G., Lutkenhaus, N., Mor, T., et al.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85(6), 1330 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    Yuan, Z.L.: Avoiding the blinding attack in QKD. Nat. Photonics 4(4), 800–801 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    Zhao, Y., Fung, C.H.F., Qi, B., et al.: Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Phys. Rev. A 78(4), 042333 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108(13), 130503 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    Ma, X.F., Fung, C.H.F., Razavi, M.: Statistical fluctuation analysis for measurement-device-independent quantum key distribution. Phys. Rev. A 86(5), 052305 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    Sun, S.H., Gao, M., Li, C.Y., et al.: Practical decoy-state measurement-device-independent quantum key distribution. Phys. Rev. A 87(5), 052329 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    Zhang, Y.C., Li, Z.Y., Yu, S., et al.: Continuous-variable measurement-device-independent quantum key distribution using squeezed states. Phys. Rev. A 90(5), 052325 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    Tang, Y.L., Yin, H.L., Chen, S.J., et al.: Measurement-device-independent quantum key distribution over 200 km. Phys. Rev. Lett. 113(19), 190501 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    Yin, H.L., Chen, T.Y., Yu, Z.W., et al.: Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117(19), 190501 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    Schmitt-Manderbach, T., Weier, H., Fürst, M., et al.: Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett. 98(1), 010504 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    Yin, J., Ren, J.G., Lu, H., et al.: Quantum teleportation and entanglement distribution over 100 km free-space channels. Nature 488(7410), 185 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    Liao, S.K., Cai, W.Q., Liu, W.Y., et al.: Satellite-to-ground quantum key distribution. Nature 549, 7670 (2017)CrossRefGoogle Scholar
  20. 20.
    Wang, L., Zhao, S.M., Gong, L.Y., et al.: Free-space measurement-device-independent quantum-key-distribution protocol using decoy states with orbital angular momentum. Chin. Phys. B 24(12), 238–245 (2015)Google Scholar
  21. 21.
    Goyal, S., Ibrahim, A.H., Roux, F.S., et al. Experimental orbital angular momentum based quantum key distribution through turbulence. arXiv ID: 1412.0788Google Scholar
  22. 22.
    Capraro, I., Tomaello, A., Dall’Arche, A., et al.: Impact of turbulence in long range quantum and classical communications. Phys. Rev. Lett. 109(20), 200502 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    Vallone, G., Marangon, D.G., Canale, M., et al.: Adaptive real time selection for quantum key distribution in lossy and turbulent free-space channels. Phys. Rev. A 91(4), 042320 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    Erven, C., Heim, B., Meyerscott, E., et al.: Studying free-space transmission statistics and improving free-space QKD in the turbulent atmosphere. New J. Phys. 14(12), 852–859 (2012)CrossRefGoogle Scholar
  25. 25.
    Wang, W.Y., Xu, F.H., Lo, H.K.: Prefixed-threshold real-time selection method in free-space quantum key distribution. Phys. Rev. A 97(3), 032337 (2018)ADSCrossRefGoogle Scholar
  26. 26.
    Bedington, R., Arrazola, J.M., Ling, A.: Progress in satellite quantum key distribution. Nature 3, 30 (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Air Force Engineering UniversityXi’anChina
  2. 2.National University of Defense and TechnologyXi’anChina
  3. 3.State Key Laboratory of CryptologyBeijingChina

Personalised recommendations