Polygamy relation for the Rényi-\(\alpha \) entanglement of assistance in multi-qubit systems

  • Wei SongEmail author
  • Ming Yang
  • Jun-Long Zhao
  • Da-Chuang Li
  • Zhuo-Liang Cao


We prove a new polygamy relation of multi-party quantum entanglement in terms of Rényi-\(\alpha \) entanglement of assistance for \(\left( {\sqrt{7} - 1} \right) /2\le \alpha \le \left( {\sqrt{13} - 1} \right) /2\). This class of polygamy inequality reduces to the polygamy inequality based on entanglement of assistance since Rényi-\(\alpha \) entanglement is a generalization of entanglement of formation.


Rényi-\(\alpha \) entanglement of assistance Polygamy relation Multi-qubit systems 



This work was supported by NSF-China under Grant Nos. 11374085, 11274010, the Anhui Provincial Natural Science Foundation under Grant Nos.1708085MA12, 1708085MA10, the Key Program of the Education Department of Anhui Province under Grant Nos. KJ2017A922, KJ2016A583, the discipline top-notch talents Foundation of Anhui Provincial Universities under Grant Nos. gxbjZD2017024, gxbjZD2016078, the Anhui Provincial Candidates for academic and technical leaders Foundation under Grant No. 2015H052, and the Excellent Young Talents Support Plan of Anhui Provincial Universities.


  1. 1.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Pawlowski, M.: Security proof for cryptographic protocols based only on the monogamy of Bells inequality violations. Phys. Rev. A 82(1–4), 032313 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    Bennett, C.H.: The monogamy of entanglement, the ambiguity of the past, and the complexity of the present. In: Proceedings of the FQXi 4th International Conference, Vieques Island, Puerto Rico (2014). Accessed Jan 2018
  4. 4.
    Toner, B.: Monogamy of non-local quantum correlations. Proc. R. Soc. A 465, 59–69 (2009)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Seevinck, M.P.: Monogamy of correlations versus monogamy of entanglement. Quantum Inf. Process. 9, 273–294 (2010)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Ma, X.-S., Dakic, B., Naylor, W., Zeilinger, A., Walther, P.: Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems. Nat. Phys. 7, 399–405 (2011)CrossRefGoogle Scholar
  7. 7.
    Garcia-Saez, A., Latorre, J.I.: Renormalization group contraction of tensor networks in three dimensions. Phys. Rev. B 87(1–7), 085130 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    Susskind, L.: Black hole complementarity and the Harlow–Hayden conjecture. arXiv:1301.4505
  9. 9.
    Lloyd, S., Preskill, J.: Unitarity of black hole evaporation in final-state projection models. J. High Energy Phys. 08(1–29), 126 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61(1–5), 052306 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    Osborne, T.J., Verstraete, F.: General monogamy inequality for bipartite qubit entanglement. Phys. Rev. Lett. 96(1–4), 220503 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    Ou, Y.-C., Fan, H., Fei, S.-M.: Proper monogamy inequality for arbitrary pure quantum states. Phys. Rev. A 78(1–4), 012311 (2008)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Eltschka, C., Osterloh, A., Siewert, J.: Possibility of generalized monogamy relations for multipartite entanglement beyond three qubits. Phys. Rev. A 80((1–7)), 032313 (2009)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Ren, X.-J., Jiang, W.: Entanglement monogamy inequality in a \(2\bigotimes 2\bigotimes 4\) system. Phys. Rev. A 81(1–4), 024305 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Cornelio, M.F.: Multipartite monogamy of the concurrence. Phys. Rev. A 87(1–4), 032330 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Regula, B., DiMartino, S., Lee, S., Adesso, G.: Strong monogamy conjecture for multiqubit entanglement: the four-qubit case. Phys. Rev. Lett. 113(1–4), 110501 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    Bai, Y.-K., Ye, M.-Y., Wang, Z.D.: Entanglement monogamy and entanglement evolution in multipartite systems. Phys. Rev. A 80(1–4), 044301 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    Chi, D.P., Choi, J.W., Jeong, K., Kim, J.S., Kim, T., Lee, S.: Monogamy equality in \(2\bigotimes 2\bigotimes d\) quantum systems. J. Math. Phys. (N. Y.) 49(1–6), 112102 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    Yu, C.-S., Song, H.-S.: Entanglement monogamy of tripartite quantum states. Phys. Rev. A 77(1–4), 032329 (2008)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Osterloh, A., Schutzhold, R.: Monogamy of entanglement and improved mean-field ansatz for spin lattices. Phys. Rev. B 91(1–5), 125114 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    Eltschka, C., Siewert, J.: Monogamy equalities for qubit entanglement from Lorentz invariance. Phys. Rev. Lett. 114(1–5), 140402 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    Adesso, G., Illuminati, F.: Continuous variable tangle, monogamy inequality, and entanglement sharing in Gaussian states of continuous variable systems. New J. Phys. 8(1–14), 15 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    Hiroshima, T., Adesso, G., Illuminati, F.: Monogamy inequality for distributed Gaussian entanglement. Phys. Rev. Lett. 98(1–4), 050503 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    Adesso, G., Illuminati, F.: Strong monogamy of bipartite and genuine multipartite entanglement: the Gaussian case. Phys. Rev. Lett. 99(1–4), 150501 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    Koashi, M., Winter, A.: Monogamy of quantum entanglement and other correlations. Phys. Rev. A 69(1–6), 022309 (2004)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Ou, Y.-C., Fan, H.: Monogamy inequality in terms of negativity for three-qubit states. Phys. Rev. A 75(1–5), 062308 (2007)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Kim, J.S., Das, A., Sanders, B.C.: Entanglement monogamy of multipartite higher-dimensional quantum systems using convex-roof extended negativity. Phys. Rev. A 79(1–7), 012329 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    He, H., Vidal, G.: Disentangling theorem and monogamy for entanglement negativity. Phys. Rev. A 91(1–6), 012339 (2015)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Choi, J.H., Kim, J.S.: Negativity and strong monogamy of multiparty quantum entanglement beyond qubits. Phys. Rev. A 92(1–8), 042307 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    Luo, Y., Li, Y.: Monogamy of \(\alpha \)th power entanglement measurement in qubit systems. Ann. Phys. 362, 511–520 (2015)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Kim, J.S., Sanders, B.C.: Monogamy of multi-qubit entanglement using Renyi entropy. J. Phys. A Math. Theor. 43(1–13), 445305 (2010)CrossRefGoogle Scholar
  32. 32.
    Cornelio, M.F., de Oliveira, M.C.: Strong superadditivity and monogamy of the Renyi measure of entanglement. Phys. Rev. A 81(1–4), 032332 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    Lohmayer, R., Osterloh, A., Siewert, J., Uhlmann, A.: Entangled three-qubit states without concurrence and three-tangle. Phys. Rev. Lett. 97(1–4), 260502 (2006)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    de Oliveira, T.R., Cornelio, M.F., Fanchini, F.F.: Monogamy of entanglement of formation. Phys. Rev. A 89(1–4), 034303 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    Bai, Y.-K., Xu, Y.-F., Wang, Z.D.: General monogamy relation for the entanglement of formation in multiqubit systems. Phys. Rev. Lett. 113(1–5), 100503 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    Zhu, X.-N., Fei, S.-M.: Entanglement monogamy relations of qubit systems. Phys. Rev. A 90(1–5), 024304 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    Bai, Y.-K., Xu, Y.-F., Wang, Z.D.: Hierarchical monogamy relations for the squared entanglement of formation in multipartite systems. Phys. Rev. A 90(1–12), 062343 (2014)ADSCrossRefGoogle Scholar
  38. 38.
    Liu, F., Gao, F., Wen, Q.-Y.: Linear monogamy of entanglement in three-qubit systems. Sci. Rep. 5(1–9), 16745 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    Song, W., Bai, Y.K., Yang, M., Yang, M., Cao, Z.L.: General monogamy relation of multiqubit systems in terms of squared Renyi-\(\alpha \) entanglement. Phys. Rev. A 93(1–7), 022306 (2016)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    Yuan, G.-M., Song, W., Yang, M., Li, D.-C., Zhao, J.-L., Cao, Z.-L.: Monogamy relation of multi-qubit systems for squared Tsallis-\(q\) entanglement. Sci. Rep. 6(1–8), 28719 (2016)ADSCrossRefGoogle Scholar
  41. 41.
    Luo, Y., Tian, T., Shao, L.-H., Li, Y.: General monogamy of Tsallis \(q\)-entropy entanglement in multiqubit systems. Phys. Rev. A 93(1–9), 062340 (2016)ADSCrossRefGoogle Scholar
  42. 42.
    Tian, T., Luo, Y., Li, Y.: Generalised monogamy relation of convex-roof extended negativity in multi-level systems. Sci. Rep. 6(1–10), 36700 (2016)ADSCrossRefGoogle Scholar
  43. 43.
    Yang, Y., Chen, W., Li, G., Zheng, Z.-J.: Generalized monogamy inequalities and upper bounds of negativity for multiqubit systems. Phys. Rev. A 97(1–6), 012336 (2018)ADSCrossRefGoogle Scholar
  44. 44.
    Gour, G., Meyer, D.A., Sanders, B.C.: Deterministic entanglement of assistance and monogamy constraints. Phys. Rev. A 72(1–4), 042329 (2005)ADSCrossRefGoogle Scholar
  45. 45.
    Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)ADSzbMATHGoogle Scholar
  46. 46.
    Gour, G., Bandyopadhay, S., Sanders, B.C.: Dual monogamy inequality for entanglement. J. Math. Phys. 48(1–13), 012108 (2007)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    Kim, J.S.: Tsallis entropy and entanglement constraints in multiqubit systems. Phys. Rev. A 81(1–8), 062328 (2010)ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    Kim, J.S.: General polygamy inequality of multiparty quantum entanglement. Phys. Rev. A 85(1–4), 062302 (2012)ADSCrossRefGoogle Scholar
  49. 49.
    Buscemi, F., Gour, G., Kim, J.S.: Polygamy of distributed entanglement. Phys. Rev. A 80(1–8), 012324 (2009)ADSCrossRefGoogle Scholar
  50. 50.
    Kim, J.S.: Tsallis entropy and general polygamy of multiparty quantum entanglement in arbitrary dimensions. Phys. Rev. A 94(1–10), 062338 (2016)ADSMathSciNetCrossRefGoogle Scholar
  51. 51.
    Cui, J., Gu, M., Kwek, L.C., Santos, M.F., Fan, H., Vedral, V.: Quantum phases with differing computational power. Nat. Commun. 3(1–6), 812 (2012)ADSCrossRefGoogle Scholar
  52. 52.
    Franchini, F., Cui, J., Amico, L., Fan, H., Gu, M., Korepin, V., Kwek, L.C., Vedral, V.: Local convertibility and the quantum simulation of edge states in many-body systems. Phys. Rev. X 4(1–8), 041028 (2014)Google Scholar
  53. 53.
    Flammia, S.T., Hamma, A., Hughes, T.L., Wen, X.G.: Topological entanglement Renyi entropy and reduced density matrix structure. Phys. Rev. Lett. 103(1–4), 261601 (2009)ADSCrossRefGoogle Scholar
  54. 54.
    Halasz, G.B., Hamma, A.: Topological Renyi entropy after a quantum quench. Phys. Rev. Lett. 110(1–5), 170605 (2013)ADSCrossRefGoogle Scholar
  55. 55.
    Wang, Y.-X., Mu, L.-Z., Vedral, V., Fan, H.: Entanglement Renyi \(\alpha \) entropy. Phys. Rev. A 93(1–10), 022324 (2016)ADSCrossRefGoogle Scholar
  56. 56.
    Mosonyi, M., Hiai, F.: On the quantum Renyi relative entropies and related capacity formulas. IEEE Trans. Inf. Theory. 57, 2474–2487 (2011)CrossRefGoogle Scholar
  57. 57.
    Debarba, T.: Koashi–Winter relation for \(\alpha \)-Renyi entropies. arXiv:1706.01924

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Wei Song
    • 1
    Email author
  • Ming Yang
    • 2
  • Jun-Long Zhao
    • 2
  • Da-Chuang Li
    • 1
  • Zhuo-Liang Cao
    • 1
  1. 1.Institute for Quantum Control and Quantum Information, School of Physics and Materials EngineeringHefei Normal UniversityHefeiChina
  2. 2.School of Physics and Material ScienceAnhui UniversityHefeiChina

Personalised recommendations