Advertisement

Fast and robust generation of singlet state via shortcuts to adiabatic passage

  • Wu-Jiang ShanEmail author
  • Xin-Ping Zhang
  • Wei-Qun Wang
  • Mei Lin
Article
  • 56 Downloads

Abstract

In this paper, we propose a protocol to fast and robustly generate two-atom singlet state by designing the evolution operator with the help of quantum Zeno dynamics. The population of the intermediate state can be controlled by system parameters. The pulses in the protocol can be fitted as Gaussian functions, which are beneficial to the experimental feasibility. Besides, the performance of various decoherence factors, such as spontaneous emission, cavity decay and fiber photon leakage, is discussed by numerical simulations. The results show that the protocol is fast and robust against decoherence and operational imperfection. Finally, the protocol is generalized to realize three-atom singlet state by the same principle.

Keywords

Quantum Zeno dynamics Shortcuts to adiabatic passage Singlet state 

Notes

Acknowledgements

This paper is supported by the science and technology research program of the education department of Jiangxi Province under Grants No. GJJ171286.

References

  1. 1.
    Zheng, S.B., Guo, G.C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    Greenberger, D.M., Horne, M.A., Zeilinger, A.: Bell’s Theorem, Quantum Theory, and Conception of the Universe. Kluwer, Dordrecht (1989)Google Scholar
  3. 3.
    Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  5. 5.
    Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Xia, Y., Song, J., Lu, P.M., Song, H.S.: Teleportation of an \(N\)-photon Greenberger–Horne–Zeilinger (GHZ) polarization entangled state using linear optical elements. J. Opt. Soc. Am. B 27, A1–A6 (2010)CrossRefGoogle Scholar
  7. 7.
    Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Cabello, A.: N-particle N-level singlet states: some properties and applications. Phys. Rev. Lett. 89, 100402 (2002)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Mermin, N.D.: Quantum mechanics vs local realism near the classical limit: a Bell inequality for spins. Phys. Rev. D 22, 356 (1980)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Cabello, A.: Supersinglets. J. Mod. Opt. 50, 1049 (2003)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Chen, X., Lizuain, I., Ruschhaupt, A., Guéry-Odelin, D., Muga, J.G.: Shortcuts to adiabatic passage in two- and three-level atoms. Phys. Rev. Lett. 105, 123003 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Huang, B.H., Chen, Y.H., Wu, Q.C., Song, J., Xia, Y.: Fast generating Greenberger–Horne–Zeilinger state via iterative interaction pictures. Laser Phys. Lett. 13, 105202 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    Kang, Y.H., Chen, Y.H., Huang, B.H., Song, J., Xia, Y.: Invariant-based pluse design for three-level systems without the rotating-wave approximation. Ann. der Phys. 529, 1700004 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    Chen, Y.H., Shi, Z.C., Song, J., Xia, Y., Zheng, S.B.: Accelerating population transfer in a transmon qutrit via shortcuts to adiabaticity. Ann. der Phys. 530, 1700351 (2018)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Wu, Q.C., Chen, Y.H., Huang, B.H., Shi, Z.C., Song, J., Xia, Y.: Protecting quantum state in time-dependent decoherence-free subspaces without the rotating-wave approximation. Ann. der Phys. 529, 1700186 (2017)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Chen, Y.H., Shi, Z.C., Song, J., Xia, Y., Zheng, S.B.: Optimal shortcut approach based on an easily obtained intermediate Hamiltonian. Phys. Rev. A 95, 062319 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    Huang, B.H., Kang, Y.H., Chen, Y.H., Wu, Q.C., Song, J., Xia, Y.: Fast quantum state engineering via universal SU(2) transformation. Phys. Rev. A 96, 022314 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    Huang, B.H., Kang, Y.H., Chen, Y.H., Shi, Z.C., Song, J., Xia, Y.: Quantum state transfer in spin chains via shortcuts to adiabaticity. Phys. Rev. A 97, 012333 (2018)ADSCrossRefGoogle Scholar
  20. 20.
    Kang, Y.H., Wu, Q.C., Chen, Y.H., Shi, Z.C., Song, J., Xia, Y.: Accelerating adiabatic quantum transfer for three-level \(Lambda \)-type structure systems via picture transformation. Ann. Phys. 379, 102 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    Kang, Y.H., Chen, Y.H., Shi, Z.C., Huang, B.H., Song, J., Xia, Y.: Nonadiabatic holonomic quantum computation using Rydberg blockade. Phys. Rev. A 97, 042336 (2018)ADSCrossRefGoogle Scholar
  22. 22.
    Kang, Y.H., Chen, Y.H., Shi, Z.C., Song, J., Xia, Y.: Fast preparation of \(W\) state with superconducting quantum interference devices by using dressed states. Phys. Rev. A 94, 052311 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    Kang, Y.H., Chen, Y.H., Wu, Q.C., Huang, B.H., Song, J., Xia, Y.: Fast generation of \(W\) states of superconducting qubits with multiple qubits with multiple Schrödinger dynamics. Sci. Rep. 6, 36737 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    Kang, Y.H., Chen, Y.H., Shi, Z.C., Huang, B.H., Song, J., Xia, Y.: Complete Bell-state analysis for superconducting-quantum-interference-device qubits with a transitionless tracking algorithm. Phys. Rev. 96, 022304 (2017)CrossRefGoogle Scholar
  25. 25.
    Kang, Y.H., Chen, Y.H., Shi, Z.C., Huang, B.H., Song, J., Xia, Y.: Pulse design for multilevel systems by utilizing Lie transforms. Phys. Rev. A 97, 033407 (2018)ADSCrossRefGoogle Scholar
  26. 26.
    Kang, Y.H., Wu, Q.C., Huang, B.H., Song, J., Xia, Y.: Arbitrary quantum state engineering in three-state systems via counterdiabatic driving. Sci. Rep. 6, 38484 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    Kang, Y.H., Huang, B.H., Lu, P.M., Xia, Y.: Reverse engineering of a Hamiltonian for a three-level system via the Rodrigues’ rotation formula. Laser Phys. Lett. 14, 025201 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    Demirplak, M., Rice, S.A.: Adiabatic population transfer with control fields. J. Phys. Chem. A 107, 9937 (2003)CrossRefGoogle Scholar
  29. 29.
    Demirplak, M., Rice, S.A.: On the consistency, extremal, and global properties of counterdiabatic fields. J. Chem. Phys. 129, 154111 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    Torrontegui, E., Ibáildeñez, S., Martínez-Garaot, S., Modugno, M., del Campo, A., Gué-Odelin, D., Ruschhaupt, A., Chen, X., Muga, J.G.: Shortcuts to adiabaticity. Adv. At. Mol. Opt. Phys. 62, 117 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    del Campo, A.: Shortcuts to adiabaticity by counterdiabatic driving. Phys. Rev. Lett. 111, 100502 (2013)CrossRefGoogle Scholar
  32. 32.
    Chen, X., Torrontegui, E., Muga, J.G.: Lewis–Riesenfeld invariants and transitionless quantum driving. Phys. Rev. A 83, 062116 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    del Campo, A., Rams, M.M., Zurek, W.H.: Assisted finite-rate adiabatic passage across a quantum critical point: exact solution for the quantum Ising model. Phys. Rev. Lett. 109, 115703 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    Muga, J.G., Chen, X., Ibáildeñez, S., Lizuain, I., Ruschhaupt, A.: Transitionless quantum drivings for the harmonic oscillator. J. Phys. B At. Mol. Opt. Phys. 43, 085509 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    Muga, J.G., Chen, X., Ruschhaup, A., Guéry-Odelin, D.: FAST TRACK COMMUNICATION: frictionless dynamics of Bose–Einstein condensates under fast trap variations. J. Phys. B At. Mol. Opt. Phys. 42, 241001 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    Chen, X., Ruschhaupt, A., Schmidt, S., del Campo, A., Guéry-Odelin, D., Muga, J.G.: Fast optimal frictionless atom cooling in harmonic traps: shortcut to adiabaticity. Phys. Rev. Lett. 104, 063002 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    Berry, M.V.: Transitionless quantum driving. J. Phys. A 42, 365303 (2009)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Lewis, H.R., Riesenfeld, W.B.: An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electomagnetic field. J. Math. Phys. 10, 1458 (1969)ADSCrossRefGoogle Scholar
  39. 39.
    Chen, Y.H., Xia, Y., Chen, Q.Q., Song, J.: Fast and noise-resistant implementation of quantum phase gates and creation of quantum entangled states. Phys. Rev. A 91, 012325 (2015)ADSCrossRefGoogle Scholar
  40. 40.
    Chen, Y.H., Xia, Y., Song, J., Chen, Q.Q.: Shortcuts to adiabatic passage for fast generation of Greenberger–Horne–Zeilinger states by transitionless quantum driving. Sci. Rep. 5, 15616 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    Chen, Z., Chen, Y.H., Xia, Y., Song, J., Huang, B.H.: Fast generation of three-atom singlet state by transitionless quantum driving. Sci. Rep. 6, 22202 (2016)ADSCrossRefGoogle Scholar
  42. 42.
    Chen, Y.H., Xia, Y., Chen, Q.Q., Song, J.: Shortcuts to adiabatic passage for multiparticle in distant cavities: applications to fast and noise-resistant quantum population transfer, entangled states’ preparation and transition. Laser Phys. Lett. 11, 115201 (2014)ADSCrossRefGoogle Scholar
  43. 43.
    Chen, X., Muga, J.G.: Engineering of fast population transfer in three-level systems. Phys. Rev. A 86, 033405 (2012)ADSCrossRefGoogle Scholar
  44. 44.
    Torrontegui, E., Ibáildeñez, S., Chen, X., Ruschhaupt, A., Guéry-Odelin, D., Muga, J.G.: Fast atomic transport without vibrational heating. Phys. Rev. A 83, 013415 (2011)ADSCrossRefGoogle Scholar
  45. 45.
    Chen, X., Torrontegui, E., Stefanatos, D., Li, J.-S., Muga, J.G.: Optimal trajectories for efficient atomic transport without final excitation. Phys. Rev. A 84, 043415 (2011)ADSCrossRefGoogle Scholar
  46. 46.
    Damski, B.: Counterdiabatic driving of the quantum Ising model. J. Stat. Mech. 12, 2014 (2014)MathSciNetGoogle Scholar
  47. 47.
    Song, X.K., Zhang, H., Ai, Q., Qiu, J., Deng, F.G.: Shortcut to adiabatic holonomic quantum computation in decoherence-free subspace with transitionless quantum driving algorithm. New J. Phys. 18, 023001 (2016)ADSCrossRefGoogle Scholar
  48. 48.
    Chen, Y.H., Huang, B.H., Song, J., Xia, Y.: Improving the stimulated Raman adiabatic passage via dissipative quantum dynamics. Opt. Commun. 380, 140 (2016)ADSCrossRefGoogle Scholar
  49. 49.
    del Campo, A.: Frictionless quantum quenches in ultracold gases: a quantum-dynamical microscope. Phys. Rev. A 84, 031606(R) (2011)ADSCrossRefGoogle Scholar
  50. 50.
    del Campo, A.: Fast frictionless dynamics as a toolbox for low-dimensional Bose–Einstein condensates. Eur. Phys. Lett. 96, 60005 (2011)CrossRefGoogle Scholar
  51. 51.
    Martínez-Garaot, S., Torrontegui, E., Chen, X., Modugno, M., Guéry-Odelin, D., Tseng, S.Y., Muga, J.G.: Vibrational mode multiplexing of ultracold atoms. Phys. Rev. Lett. 111, 213001 (2013)ADSCrossRefGoogle Scholar
  52. 52.
    Torrontegui, E., Martínez-Garaot, S., Ruschhaupt, A., Muga, J.G.: Shortcuts to adiabaticity: fast-forward approach. Phys. Rev. A 86, 013601 (2012)ADSCrossRefGoogle Scholar
  53. 53.
    Couvert, A., Kawalec, T., Reinaudi, G., Guéry-Odelin, D.: Optimal transport of ultracold atoms in the non-adiabatic regime. Europhys. Lett. 83, 13001 (2008)ADSCrossRefGoogle Scholar
  54. 54.
    Murphy, M., Jiang, L., Khaneja, N., Calarco, T.: High-fidelity fast quantum transport with imperfect controls. Phys. Rev. A 79, 020301(R) (2009)ADSCrossRefGoogle Scholar
  55. 55.
    Torrontegui, E., Chen, X., Modugno, M., Schmidt, S., Ruschhaupt, A., Muga, J.G.: Fast transport of Bose–Einstein condensates. New J. Phys. 14, 13031 (2012)CrossRefGoogle Scholar
  56. 56.
    Palmero, M., Torrontegui, E., Guéry-Odelin, D., Muga, J.G.: Fast transport of two ions in an anharmonic trap. Phys. Rev. A 88, 053423 (2013)ADSCrossRefGoogle Scholar
  57. 57.
    Kang, Y.H., Chen, Y.H., Wu, Q.C., Huang, B.H., Xia, Y., Song, J.: Reverse engineering of a Hamiltonian by designing the evolution operators. Sci. Rep. 6, 30151 (2016)ADSCrossRefGoogle Scholar
  58. 58.
    Kang, Y.H., Shi, Z.C., Huang, B.H., Song, J., Xia, Y.: Fast and robust quantum information transfer in annular and radial superconducting networks. Ann. Der Phys. 529, 1700154 (2017)ADSMathSciNetCrossRefGoogle Scholar
  59. 59.
    Misra, B., Sudarshan, E.C.G.: The Zeno’s paradox in quantum theory. J. Math. Phys. 18, 756 (1977)ADSMathSciNetCrossRefGoogle Scholar
  60. 60.
    Itano, Wayne M., Heinzen, D.J., Bollinger, J.J., Wineland, D.J.: Quantum Zeno effect. Phys, Rev. A 41, 2295 (1990)ADSCrossRefGoogle Scholar
  61. 61.
    Facchi, P., Gorini, V., Marmo, G., Pascazio, S., Sudarshan, E.C.G.: Quantum Zeno dynamics. Phys. Lett. A 275, 12 (2000)ADSMathSciNetCrossRefGoogle Scholar
  62. 62.
    Facchi, P., Pascazio, S., Scardicchio, A., Schulman, L.S.: Zeno dynamics yields ordinary constraints. Phys. Rev. A 65, 012108 (2002)ADSCrossRefGoogle Scholar
  63. 63.
    Facchi, P., Pascazio, S.: Quantum Zeno subspaces. Phys. Rev. Lett. 89, 080401 (2002)ADSMathSciNetCrossRefGoogle Scholar
  64. 64.
    Facchi, P., Marmo, G., Pascazio, S.: Quantum Zeno dynamics and quantum Zeno subspaces. J. Phys. Conf. Ser. 196, 012017 (2009)CrossRefGoogle Scholar
  65. 65.
    Yang, R.C., Li, G., Zhang, T.C.: Robust atomic entanglement in two coupled cavities via virtual excitations and quantum Zeno dynamics. Quantum Inf. Process. 12, 493 (2012)ADSMathSciNetCrossRefGoogle Scholar
  66. 66.
    Serafini, A., Mancini, S., Bose, S.: Distributed quantum computation via optical fibers. Phys. Rev. Lett. 96, 101503 (2006)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Wu-Jiang Shan
    • 1
    Email author
  • Xin-Ping Zhang
    • 1
  • Wei-Qun Wang
    • 1
  • Mei Lin
    • 2
  1. 1.School of General EducationJiangxi Vocational College of Industry and EngineeringPingxiangChina
  2. 2.Department of Information EngineeringJiangxi Vocational College of Industry and EngineeringPingxiangChina

Personalised recommendations