Proposal of realizing superadiabatic geometric quantum computation in decoherence-free subspaces
- 85 Downloads
Abstract
We propose a practical scheme to implement universal superadiabatic geometric quantum gates in decoherence-free subspaces in the trapped-ions system. The logical qubit is only encoded by two neighboring physical qubits, which is the minimal resource for the decoherence-free subspace encoding. Different from the nonadiabatic control in decoherence-free subspace (Liang et al. in Phys Rev A 89:062312, 2014), a new Hamiltonian to implement universal effective interaction between logical qubits is proposed in the scheme. The proposed gates are numerically demonstrated to be robust against both systematic errors and collective dephasing noises, which combine the advantages of superadiabatic geometric quantum control and decoherence-free subspace. Since the Hamiltonian we use relies solely on two-body interactions, our scheme would be promising to be realized experimentally in trapped-ions systems.
Keywords
Superadiabatic geometric quantum computation Decoherence-free subspace Minimal requirements Trapped ionsNotes
Acknowledgements
We thank X. X. Yue, Z. Y. Xue and S. L. Zhu for their helpful discussions. This work was supported by National Natural Science Foundation of China (NSFC) (11704131, 11474107, 91636218, 61875060); National Key Research and Development Program of China (NKRDPC) (2016YFA0301803, 2016YFA0302800); and the Natural Science Foundation of Guangdong province (2016A030310462).
References
- 1.Berry, M.V.: Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. A 392, 45 (1984)ADSMathSciNetCrossRefGoogle Scholar
- 2.Aharonov, Y., Anandan, J.: Phase change during a cyclic quantum evolution. Phys. Rev. Lett. 58, 1593 (1987)ADSMathSciNetCrossRefGoogle Scholar
- 3.De Chiara, G., Palma, G.M.: Berry phase for a spin 1/2 particle in a classical fluctuating field. Phys. Rev. Lett. 91, 090404 (2003)CrossRefGoogle Scholar
- 4.Solinas, P., Zanadi, P., Zanghì, N.: Robustness of non-Abelian holonomic quantum gates against parametric noise. Phys. Rev. A 70, 042316 (2004)ADSMathSciNetCrossRefGoogle Scholar
- 5.Solinas, P., Sassetti, M., Truini, P., Zanghì, N.: On the stability of quantum holonomic gates. New J. Phys. 14, 093006 (2012)ADSMathSciNetCrossRefGoogle Scholar
- 6.Zhu, S.L., Zanardi, P.: Geometric quantum gates that are robust against stochastic control errors. Phys. Rev. A 72, 020301(R) (2005)ADSCrossRefGoogle Scholar
- 7.Liang, Z.T., Yue, X.X., Lv, Q.X., Du, Y.X., Huang, W., Yan, H., Zhu, S.L.: Proposal for implementing universal superadiabatic geometric quantum gates in nitrogen-vacancy centers. Phys. Rev. A 93, 040305(R) (2016)ADSCrossRefGoogle Scholar
- 8.Berger, S., Pechal, M., Abdumalikov, A.A., Eichler, C., Steffen, L., Fedorov, A., Wallraff, A., Filipp, S.: Exploring the effect of noise on the Berry phase. Phys. Rev. A 87, 060303(R) (2013)ADSCrossRefGoogle Scholar
- 9.Yale, C.G., Joseph Heremans, F., Zhou, B.B., Auer, A., Burkard, G., Awschalom, D.D.: Optical manipulation of the Berry phase in a solid-state spin qubit. Nat. Photon. 10, 184–189 (2016)ADSCrossRefGoogle Scholar
- 10.Sjöqvist, E.: Trend: a new phase in quantum computation. Physics 1, 35 (2008)CrossRefGoogle Scholar
- 11.Sjöqvist, E.: Geometric phases in quantum information. Int. J. Quantum Chem. 115, 1311 (2015)CrossRefGoogle Scholar
- 12.Tan, X., Zhang, D.W., Zhang, Z., Yu, Y., Han, S., Zhu, S.L.: Demonstration of geometric Landau–Zener interferometry in a superconducting qubit. Phys. Rev. Lett 112, 027001 (2014)ADSCrossRefGoogle Scholar
- 13.Zanardi, P., Rasetti, M.: Holonomic quantum computation. Phys. Lett. A 264, 94 (1999)ADSMathSciNetCrossRefGoogle Scholar
- 14.Pachos, J., Zanardi, P., Rasetti, M.: Non-Abelian Berry connections for quantum computation. Phys. Rev. A 61, 010305(R) (1999)MathSciNetCrossRefGoogle Scholar
- 15.Duan, L.M., Cirac, J.I., Zoller, P.: Geometric manipulation of trapped ions for quantum computation. Science 292, 1695 (2001)ADSCrossRefGoogle Scholar
- 16.Wang, X.B., Keiji, M.: Nonadiabatic conditional geometric phase shift with NMR. Phys. Rev. Lett. 87, 097901 (2001)ADSCrossRefGoogle Scholar
- 17.Zhu, S.L., Wang, Z.D.: Implementation of universal quantum gates based on nonadiabatic geometric phases. Phys. Rev. Lett. 89, 097902 (2002)ADSCrossRefGoogle Scholar
- 18.Zhu, S.L., Wang, Z.D.: Geometric phase shift in quantum computation using superconducting nanocircuits: nonadiabatic effects. Phys. Rev. A 66, 042322 (2002)ADSCrossRefGoogle Scholar
- 19.Zhu, S.L., Wang, Z.D.: Universal quantum gates based on a pair of orthogonal cyclic states: application to NMR systems. Phys. Rev. A 67, 022319 (2003)ADSCrossRefGoogle Scholar
- 20.Zhang, X.D., Zhu, S.L., Hu, L., Wang, Z.D.: Nonadiabatic geometric quantum computation using a single-loop scenario. Phys. Rev. A. 71, 014302 (2005)ADSCrossRefGoogle Scholar
- 21.Zhu, S.L., Wang, Z.D.: Unconventional geometric quantum computation. Phys. Rev. Lett. 91, 187902 (2003)ADSCrossRefGoogle Scholar
- 22.Zhu, S.L., Wang, Z.D., Zanardi, P.: Geometric quantum computation and multiqubit entanglement with superconducting qubits inside a cavity. Phys. Rev. Lett. 94, 100502 (2005)ADSMathSciNetCrossRefGoogle Scholar
- 23.Sjöqvist, E., Tong, D.M., Andersson, L.M.A.L.M., Hessmo, B., Johansson, M., Singh, K.: Non-adiabatic holonomic quantum computation. New J. Phys. 14, 103035 (2012)ADSMathSciNetCrossRefGoogle Scholar
- 24.Liang, Z.T., Du, Y.X., Huang, W., Xue, Z.Y., Yan, H.: Nonadiabatic holonomic quantum computation in decoherence-free subspaces with trapped ions. Phys. Rev. A 89, 062312 (2014)ADSCrossRefGoogle Scholar
- 25.Xue, Z.Y., Zhou, J., Wang, Z.D.: Universal holonomic quantum gates in decoherence-free subspace on superconducting circuits. Phys. Rev. A 92, 022320 (2015)ADSCrossRefGoogle Scholar
- 26.Xue, Z.-Y., Zhou, J., Hu, Y.: Nonadiabatic holonomic quantum computation with all-resonant control. Phys. Rev. A 94, 022331 (2016)ADSCrossRefGoogle Scholar
- 27.Xu, G.F., Zhang, J., Tong, D.M., Sjöqvist, E., Kwek, L.C.: Nonadiabatic holonomic quantum computation in decoherence-free subspaces. Phys. Rev. Lett. 109, 170501 (2012)ADSCrossRefGoogle Scholar
- 28.Abdumalikov, A.A., Fink, J.M., Juliusson, K., Pechal, M., Berger, S., Wallraff, A., Filipp, S.: Experimental realization of non-Abelian non-adiabatic geometric gates. Nature 496, 482 (2013)ADSCrossRefGoogle Scholar
- 29.Feng, G., Xu, G., Long, G.: Experimental realization of nonadiabatic holonomic quantum computation. Phys. Rev. Lett. 110, 190501 (2013)ADSCrossRefGoogle Scholar
- 30.Arroyo-Camejo, S., Lazariev, A., Hell, S.W., Balasubramanian, G.: Room temperature high-fidelity holonomic single-qubit gate on a solid-state spin. Nat. Commun. 5, 4870 (2014)ADSCrossRefGoogle Scholar
- 31.Mousolou, V.A., Canall, C.M., Sjöqvist, E.: Universal non-adiabatic holonomic gates in quantum dots and single-molecule magnets. New J. Phys 16, 013029 (2014)CrossRefGoogle Scholar
- 32.Zu, C., Wang, W.B., He, L., Zhang, W.G., Dai, C.Y., Wang, F., Duan, L.M.: Experimental realization of universal geometric quantum gates with solid-state spins. Nature 514, 72 (2014)ADSCrossRefGoogle Scholar
- 33.Wu, H., Gauger, E.M., George, R.E., Möttönen, M., Riemann, H., Abrosimov, N.V., Becker, P., Pohl, H.J., Itoh, K.M., Thewalt, M.L.W., Morton, J.J.L.: Geometric phase gates with adiabatic control in electron spin resonance. Phys. Rev. A 87, 032326 (2013)ADSCrossRefGoogle Scholar
- 34.Zheng, S.B., Yang, C.P., Nori, F.: Comparison of the sensitivity to systematic errors between nonadiabatic non-Abelian geometric gates and their dynamical counterparts. Phys. Rev. A 93, 032313 (2016)ADSCrossRefGoogle Scholar
- 35.Zhang, J., Kyaw, T.H., Tong, D.M., Sjöqvist, E., Kwek, L.C.: Fast non-Abelian geometric gates via transitionless quantum driving. Sci. Rep. 5, 18414 (2015)ADSCrossRefGoogle Scholar
- 36.Song, X.K., Zang, H., Ai, Q., Qiu, J., Deng, F.G.: Shortcuts to adiabatic holonomic quantum computation in decoherence-free subspace with transitionless quantum driving algorithm. New J. Phys. 18, 023001 (2016)ADSCrossRefGoogle Scholar
- 37.Du, Y.X., Liang, Z.T., Li, Y.C., Yue, X.X., Lv, Q.X., Huang, W., Chen, X., Yan, H., Zhu, S.L.: Experimental realization of stimulated Raman shortcut-to-adiabatic passage with cold atoms. Nat. Commun. 7, 12479 (2016)ADSCrossRefGoogle Scholar
- 38.An, S., Lv, D., del Campo, A., Kim, K.: Shortcuts to adiabaticity by counterdiabatic driving for trapped-ion displacement in phase space. Nat. Commun. 7, 12999 (2016)ADSCrossRefGoogle Scholar
- 39.Zhang, J., Shim, J.H., Niemeyer, I., Taniguchi, T., Teraji, T., Abe, H., Onoda, S., Yamamoto, T., Ohshima, T., Isoya, J., Suter, D.: Experimental implementation of assisted quantum adiabatic passage in a single spin. Phys. Rev. Lett. 110, 240501 (2013)ADSCrossRefGoogle Scholar
- 40.Bason, M.G., Viteau, M., Malossi, N., Huillery, P., Arimondo, E., Ciampini, D., Fazio, R., Giovannetti, V., Mannella, R., Morsch, O.: High-fidelity quantum driving. Nat. Phys. 8, 147 (2012)CrossRefGoogle Scholar
- 41.Zhou, B.B., Baksic, A., Ribeiro, H., Yale, C.G., Heremans, F.J., Jerger, P.C., Auer, A., Burkard, G., Clerk, A.A., Awschalom, D.D.: Accelerated quantum control using superadiabatic dynamics in a solid-state lambda system. Nat. Phys. 13, 330–334 (2017)CrossRefGoogle Scholar
- 42.Suter, D., Álvarez, G.A.: Colloquium: protecting quantum information against environmental noise. Rev. Mod. Phys. 88, 041001 (2016)ADSMathSciNetCrossRefGoogle Scholar
- 43.Wu, L.A., Zanardi, P., Lidar, D.A.: Holonomic quantum computation in decoherence-free subspaces. Phys. Rev. Lett. 95, 130501 (2005)ADSMathSciNetCrossRefGoogle Scholar
- 44.Cen, L.X., Wang, Z.D., Wang, S.J.: Scalable quantum computation in decoherence-free subspaces with trapped ions. Phys. Rev. A 74, 032321 (2006)ADSCrossRefGoogle Scholar
- 45.Zhang, X.D., Zhang, Q.H., Wang, Z.D.: Physical implementation of holonomic quantum computation in decoherence-free subspaces with trapped ions. Phys. Rev. A 74, 034302 (2006)ADSCrossRefGoogle Scholar
- 46.Pachos, J.K., Beige, A.: Decoherence-free dynamical and geometrical entangling phase gates. Phys. Rev. A 69, 033817 (2004)ADSCrossRefGoogle Scholar
- 47.Feng, X.L., Wu, C.F., Sun, H., Oh, C.H.: Geometric entangling gates in decoherence-free subspaces with minimal requirements. Phys. Rev. Lett. 103, 200501 (2009)ADSCrossRefGoogle Scholar
- 48.Xue, Z.-Y., Zhu, S.-L., Wang, Z.D.: Quantum computation in a decoherence-free subspace with superconducting devices. Eur. Phys. J. D 55, 223 (2009)ADSCrossRefGoogle Scholar
- 49.Sørensen, A., Mølmer, K.: Quantum computation with ions in thermal motion. Phys. Rev. Lett. 82, 1971 (1999)ADSCrossRefGoogle Scholar
- 50.Sørensen, A., Mølmer, K.: Entanglement and quantum computation with ions in thermal motion. Phys. Rev. A 62, 022311 (2000)ADSCrossRefGoogle Scholar
- 51.Zhu, S.L., Monroe, C., Duan, L.M.: Trapped Ion quantum computation with transverse phonon modes. Phys. Rev. Lett. 97, 050505 (2006)ADSCrossRefGoogle Scholar
- 52.Zhu, S.L., Monroe, C., Duan, L.M.: Arbitrary-speed quantum gates within large ion crystals through minimum control of laser beams. Europhys. Lett. 73, 485 (2006)ADSCrossRefGoogle Scholar
- 53.Schmidt-Kaler, F., Häffner, H., Riebe, M., Gulde, S., Lancaster, G.P.T., Deuschle, T., Becher, C., Roos, C.F., Eschner, J., Blatt, R.: Realization of the Cirac–Zoller controlled-NOT quantum gate. Nature 422, 408 (2003)ADSCrossRefGoogle Scholar
- 54.Riebe, M., Kim, K., Schindler, P., Monz, T., Schmidt, P.O., Körber, T.K., Hänsel, W., Häffner, H., Roos, C.F., Blatt, R.: Process tomography of ion trap quantum gates. Phys. Rev. Lett. 97, 220407 (2006)ADSCrossRefGoogle Scholar
- 55.Häffner, H., Gulde, S., Riebe, M., Lancaster, G., Becher, C., Eschner, J., Schmidt-Kaler, F., Blatt, R.: Precision measurement and compensation of optical Stark shifts for an ion-trap quantum processor. Phys. Rev. Lett. 90, 143602 (2003)ADSCrossRefGoogle Scholar
- 56.Dzialoshinski, L.: A thermodynamic theory of weak ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241 (1958)ADSCrossRefGoogle Scholar
- 57.Moriya, T.: New mechanism of anisotropic superexchange interaction. Phys. Rev. Lett. 4, 228 (1960)ADSCrossRefGoogle Scholar
- 58.Kim, K., Roos, C.F., Aolita, L., Häfner, H., Nebendahl, V., Blatt, R.: Geometric phase gate on an optical transition for ion trap quantum computation. Phys. Rev. A 77, 050303(R) (2008)ADSCrossRefGoogle Scholar
- 59.Monz, T., Kim, K., Villar, A.S., Schindler, P., Chwalla, M., Riebe, M., Roos, C.F., Häffner, H., Hänsel, W., Hennrich, M., Blatt, R.: Realization of universal ion-trap quantum computation with decoherence-free qubits. Phys. Rev. Lett. 103, 200503 (2009)ADSCrossRefGoogle Scholar
- 60.Berry, M.V.: Transitionless quantum driving. J. Phys. A Math. Theor. 42, 365303 (2009)MathSciNetCrossRefGoogle Scholar
- 61.Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976)ADSMathSciNetCrossRefGoogle Scholar
- 62.Solinas, P., Zanardi, P., Zanghì, N.: Robustness of non-Abelian holonomic quantum gates against parametric noise. Phys. Rev. A 70, 042316 (2004)ADSMathSciNetCrossRefGoogle Scholar
- 63.Zahedinejad, E., Ghosh, J., Sanders, B.C.: High-fidelity single-shot toffoli gate via quantum control. Phys. Rev. Lett. 114, 200502 (2015)ADSCrossRefGoogle Scholar
- 64.Lin, Y., Gaebler, J.P., Reiter, F., Tan, T.R., Bowler, R., Wan, Y., Keith, A., Knill, E., Glancy, S., Coakley, K., Sørensen, A.S., Leibfried, D., Wineland, D.J.: Preparation of entangled states through Hilbert space engineering. Phys. Rev. Lett. 117, 140502 (2016)ADSCrossRefGoogle Scholar
- 65.Gaebler, J.P., Tan, T.R., Lin, Y., Wan, Y., Bowler, R., Keith, A.C., Glancy, S., Coakley, K., Knill, E., Leibfried, D., Wineland, D.J.: High-fidelity universal gate set for \({ ^{9}Be}^{+}\) ion qubits. Phys. Rev. Lett. 117, 060505 (2016)ADSCrossRefGoogle Scholar
- 66.Chen, Q., Yang, W.L., Feng, M.: Quantum gate operations in decoherence-free fashion with separate nitrogen-vacancy centers coupled to a whispering-gallery mode resonator. Eur. Phys. J. D 66, 238 (2012)ADSCrossRefGoogle Scholar