Advertisement

Proposal of realizing superadiabatic geometric quantum computation in decoherence-free subspaces

  • Jia-Zhen Li
  • Yan-Xiong DuEmail author
  • Qing-Xian Lv
  • Zhen-Tao Liang
  • Wei Huang
  • Hui Yan
Article
  • 85 Downloads

Abstract

We propose a practical scheme to implement universal superadiabatic geometric quantum gates in decoherence-free subspaces in the trapped-ions system. The logical qubit is only encoded by two neighboring physical qubits, which is the minimal resource for the decoherence-free subspace encoding. Different from the nonadiabatic control in decoherence-free subspace (Liang et al. in Phys Rev A 89:062312, 2014), a new Hamiltonian to implement universal effective interaction between logical qubits is proposed in the scheme. The proposed gates are numerically demonstrated to be robust against both systematic errors and collective dephasing noises, which combine the advantages of superadiabatic geometric quantum control and decoherence-free subspace. Since the Hamiltonian we use relies solely on two-body interactions, our scheme would be promising to be realized experimentally in trapped-ions systems.

Keywords

Superadiabatic geometric quantum computation Decoherence-free subspace Minimal requirements Trapped ions 

Notes

Acknowledgements

We thank X. X. Yue, Z. Y. Xue and S. L. Zhu for their helpful discussions. This work was supported by National Natural Science Foundation of China (NSFC) (11704131, 11474107, 91636218, 61875060); National Key Research and Development Program of China (NKRDPC) (2016YFA0301803, 2016YFA0302800); and the Natural Science Foundation of Guangdong province (2016A030310462).

References

  1. 1.
    Berry, M.V.: Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. A 392, 45 (1984)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Aharonov, Y., Anandan, J.: Phase change during a cyclic quantum evolution. Phys. Rev. Lett. 58, 1593 (1987)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    De Chiara, G., Palma, G.M.: Berry phase for a spin 1/2 particle in a classical fluctuating field. Phys. Rev. Lett. 91, 090404 (2003)CrossRefGoogle Scholar
  4. 4.
    Solinas, P., Zanadi, P., Zanghì, N.: Robustness of non-Abelian holonomic quantum gates against parametric noise. Phys. Rev. A 70, 042316 (2004)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Solinas, P., Sassetti, M., Truini, P., Zanghì, N.: On the stability of quantum holonomic gates. New J. Phys. 14, 093006 (2012)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Zhu, S.L., Zanardi, P.: Geometric quantum gates that are robust against stochastic control errors. Phys. Rev. A 72, 020301(R) (2005)ADSCrossRefGoogle Scholar
  7. 7.
    Liang, Z.T., Yue, X.X., Lv, Q.X., Du, Y.X., Huang, W., Yan, H., Zhu, S.L.: Proposal for implementing universal superadiabatic geometric quantum gates in nitrogen-vacancy centers. Phys. Rev. A 93, 040305(R) (2016)ADSCrossRefGoogle Scholar
  8. 8.
    Berger, S., Pechal, M., Abdumalikov, A.A., Eichler, C., Steffen, L., Fedorov, A., Wallraff, A., Filipp, S.: Exploring the effect of noise on the Berry phase. Phys. Rev. A 87, 060303(R) (2013)ADSCrossRefGoogle Scholar
  9. 9.
    Yale, C.G., Joseph Heremans, F., Zhou, B.B., Auer, A., Burkard, G., Awschalom, D.D.: Optical manipulation of the Berry phase in a solid-state spin qubit. Nat. Photon. 10, 184–189 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    Sjöqvist, E.: Trend: a new phase in quantum computation. Physics 1, 35 (2008)CrossRefGoogle Scholar
  11. 11.
    Sjöqvist, E.: Geometric phases in quantum information. Int. J. Quantum Chem. 115, 1311 (2015)CrossRefGoogle Scholar
  12. 12.
    Tan, X., Zhang, D.W., Zhang, Z., Yu, Y., Han, S., Zhu, S.L.: Demonstration of geometric Landau–Zener interferometry in a superconducting qubit. Phys. Rev. Lett 112, 027001 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    Zanardi, P., Rasetti, M.: Holonomic quantum computation. Phys. Lett. A 264, 94 (1999)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Pachos, J., Zanardi, P., Rasetti, M.: Non-Abelian Berry connections for quantum computation. Phys. Rev. A 61, 010305(R) (1999)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Duan, L.M., Cirac, J.I., Zoller, P.: Geometric manipulation of trapped ions for quantum computation. Science 292, 1695 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    Wang, X.B., Keiji, M.: Nonadiabatic conditional geometric phase shift with NMR. Phys. Rev. Lett. 87, 097901 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    Zhu, S.L., Wang, Z.D.: Implementation of universal quantum gates based on nonadiabatic geometric phases. Phys. Rev. Lett. 89, 097902 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    Zhu, S.L., Wang, Z.D.: Geometric phase shift in quantum computation using superconducting nanocircuits: nonadiabatic effects. Phys. Rev. A 66, 042322 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    Zhu, S.L., Wang, Z.D.: Universal quantum gates based on a pair of orthogonal cyclic states: application to NMR systems. Phys. Rev. A 67, 022319 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    Zhang, X.D., Zhu, S.L., Hu, L., Wang, Z.D.: Nonadiabatic geometric quantum computation using a single-loop scenario. Phys. Rev. A. 71, 014302 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    Zhu, S.L., Wang, Z.D.: Unconventional geometric quantum computation. Phys. Rev. Lett. 91, 187902 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    Zhu, S.L., Wang, Z.D., Zanardi, P.: Geometric quantum computation and multiqubit entanglement with superconducting qubits inside a cavity. Phys. Rev. Lett. 94, 100502 (2005)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Sjöqvist, E., Tong, D.M., Andersson, L.M.A.L.M., Hessmo, B., Johansson, M., Singh, K.: Non-adiabatic holonomic quantum computation. New J. Phys. 14, 103035 (2012)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Liang, Z.T., Du, Y.X., Huang, W., Xue, Z.Y., Yan, H.: Nonadiabatic holonomic quantum computation in decoherence-free subspaces with trapped ions. Phys. Rev. A 89, 062312 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    Xue, Z.Y., Zhou, J., Wang, Z.D.: Universal holonomic quantum gates in decoherence-free subspace on superconducting circuits. Phys. Rev. A 92, 022320 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    Xue, Z.-Y., Zhou, J., Hu, Y.: Nonadiabatic holonomic quantum computation with all-resonant control. Phys. Rev. A 94, 022331 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    Xu, G.F., Zhang, J., Tong, D.M., Sjöqvist, E., Kwek, L.C.: Nonadiabatic holonomic quantum computation in decoherence-free subspaces. Phys. Rev. Lett. 109, 170501 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    Abdumalikov, A.A., Fink, J.M., Juliusson, K., Pechal, M., Berger, S., Wallraff, A., Filipp, S.: Experimental realization of non-Abelian non-adiabatic geometric gates. Nature 496, 482 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    Feng, G., Xu, G., Long, G.: Experimental realization of nonadiabatic holonomic quantum computation. Phys. Rev. Lett. 110, 190501 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    Arroyo-Camejo, S., Lazariev, A., Hell, S.W., Balasubramanian, G.: Room temperature high-fidelity holonomic single-qubit gate on a solid-state spin. Nat. Commun. 5, 4870 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    Mousolou, V.A., Canall, C.M., Sjöqvist, E.: Universal non-adiabatic holonomic gates in quantum dots and single-molecule magnets. New J. Phys 16, 013029 (2014)CrossRefGoogle Scholar
  32. 32.
    Zu, C., Wang, W.B., He, L., Zhang, W.G., Dai, C.Y., Wang, F., Duan, L.M.: Experimental realization of universal geometric quantum gates with solid-state spins. Nature 514, 72 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    Wu, H., Gauger, E.M., George, R.E., Möttönen, M., Riemann, H., Abrosimov, N.V., Becker, P., Pohl, H.J., Itoh, K.M., Thewalt, M.L.W., Morton, J.J.L.: Geometric phase gates with adiabatic control in electron spin resonance. Phys. Rev. A 87, 032326 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    Zheng, S.B., Yang, C.P., Nori, F.: Comparison of the sensitivity to systematic errors between nonadiabatic non-Abelian geometric gates and their dynamical counterparts. Phys. Rev. A 93, 032313 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    Zhang, J., Kyaw, T.H., Tong, D.M., Sjöqvist, E., Kwek, L.C.: Fast non-Abelian geometric gates via transitionless quantum driving. Sci. Rep. 5, 18414 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    Song, X.K., Zang, H., Ai, Q., Qiu, J., Deng, F.G.: Shortcuts to adiabatic holonomic quantum computation in decoherence-free subspace with transitionless quantum driving algorithm. New J. Phys. 18, 023001 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    Du, Y.X., Liang, Z.T., Li, Y.C., Yue, X.X., Lv, Q.X., Huang, W., Chen, X., Yan, H., Zhu, S.L.: Experimental realization of stimulated Raman shortcut-to-adiabatic passage with cold atoms. Nat. Commun. 7, 12479 (2016)ADSCrossRefGoogle Scholar
  38. 38.
    An, S., Lv, D., del Campo, A., Kim, K.: Shortcuts to adiabaticity by counterdiabatic driving for trapped-ion displacement in phase space. Nat. Commun. 7, 12999 (2016)ADSCrossRefGoogle Scholar
  39. 39.
    Zhang, J., Shim, J.H., Niemeyer, I., Taniguchi, T., Teraji, T., Abe, H., Onoda, S., Yamamoto, T., Ohshima, T., Isoya, J., Suter, D.: Experimental implementation of assisted quantum adiabatic passage in a single spin. Phys. Rev. Lett. 110, 240501 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    Bason, M.G., Viteau, M., Malossi, N., Huillery, P., Arimondo, E., Ciampini, D., Fazio, R., Giovannetti, V., Mannella, R., Morsch, O.: High-fidelity quantum driving. Nat. Phys. 8, 147 (2012)CrossRefGoogle Scholar
  41. 41.
    Zhou, B.B., Baksic, A., Ribeiro, H., Yale, C.G., Heremans, F.J., Jerger, P.C., Auer, A., Burkard, G., Clerk, A.A., Awschalom, D.D.: Accelerated quantum control using superadiabatic dynamics in a solid-state lambda system. Nat. Phys. 13, 330–334 (2017)CrossRefGoogle Scholar
  42. 42.
    Suter, D., Álvarez, G.A.: Colloquium: protecting quantum information against environmental noise. Rev. Mod. Phys. 88, 041001 (2016)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    Wu, L.A., Zanardi, P., Lidar, D.A.: Holonomic quantum computation in decoherence-free subspaces. Phys. Rev. Lett. 95, 130501 (2005)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    Cen, L.X., Wang, Z.D., Wang, S.J.: Scalable quantum computation in decoherence-free subspaces with trapped ions. Phys. Rev. A 74, 032321 (2006)ADSCrossRefGoogle Scholar
  45. 45.
    Zhang, X.D., Zhang, Q.H., Wang, Z.D.: Physical implementation of holonomic quantum computation in decoherence-free subspaces with trapped ions. Phys. Rev. A 74, 034302 (2006)ADSCrossRefGoogle Scholar
  46. 46.
    Pachos, J.K., Beige, A.: Decoherence-free dynamical and geometrical entangling phase gates. Phys. Rev. A 69, 033817 (2004)ADSCrossRefGoogle Scholar
  47. 47.
    Feng, X.L., Wu, C.F., Sun, H., Oh, C.H.: Geometric entangling gates in decoherence-free subspaces with minimal requirements. Phys. Rev. Lett. 103, 200501 (2009)ADSCrossRefGoogle Scholar
  48. 48.
    Xue, Z.-Y., Zhu, S.-L., Wang, Z.D.: Quantum computation in a decoherence-free subspace with superconducting devices. Eur. Phys. J. D 55, 223 (2009)ADSCrossRefGoogle Scholar
  49. 49.
    Sørensen, A., Mølmer, K.: Quantum computation with ions in thermal motion. Phys. Rev. Lett. 82, 1971 (1999)ADSCrossRefGoogle Scholar
  50. 50.
    Sørensen, A., Mølmer, K.: Entanglement and quantum computation with ions in thermal motion. Phys. Rev. A 62, 022311 (2000)ADSCrossRefGoogle Scholar
  51. 51.
    Zhu, S.L., Monroe, C., Duan, L.M.: Trapped Ion quantum computation with transverse phonon modes. Phys. Rev. Lett. 97, 050505 (2006)ADSCrossRefGoogle Scholar
  52. 52.
    Zhu, S.L., Monroe, C., Duan, L.M.: Arbitrary-speed quantum gates within large ion crystals through minimum control of laser beams. Europhys. Lett. 73, 485 (2006)ADSCrossRefGoogle Scholar
  53. 53.
    Schmidt-Kaler, F., Häffner, H., Riebe, M., Gulde, S., Lancaster, G.P.T., Deuschle, T., Becher, C., Roos, C.F., Eschner, J., Blatt, R.: Realization of the Cirac–Zoller controlled-NOT quantum gate. Nature 422, 408 (2003)ADSCrossRefGoogle Scholar
  54. 54.
    Riebe, M., Kim, K., Schindler, P., Monz, T., Schmidt, P.O., Körber, T.K., Hänsel, W., Häffner, H., Roos, C.F., Blatt, R.: Process tomography of ion trap quantum gates. Phys. Rev. Lett. 97, 220407 (2006)ADSCrossRefGoogle Scholar
  55. 55.
    Häffner, H., Gulde, S., Riebe, M., Lancaster, G., Becher, C., Eschner, J., Schmidt-Kaler, F., Blatt, R.: Precision measurement and compensation of optical Stark shifts for an ion-trap quantum processor. Phys. Rev. Lett. 90, 143602 (2003)ADSCrossRefGoogle Scholar
  56. 56.
    Dzialoshinski, L.: A thermodynamic theory of weak ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241 (1958)ADSCrossRefGoogle Scholar
  57. 57.
    Moriya, T.: New mechanism of anisotropic superexchange interaction. Phys. Rev. Lett. 4, 228 (1960)ADSCrossRefGoogle Scholar
  58. 58.
    Kim, K., Roos, C.F., Aolita, L., Häfner, H., Nebendahl, V., Blatt, R.: Geometric phase gate on an optical transition for ion trap quantum computation. Phys. Rev. A 77, 050303(R) (2008)ADSCrossRefGoogle Scholar
  59. 59.
    Monz, T., Kim, K., Villar, A.S., Schindler, P., Chwalla, M., Riebe, M., Roos, C.F., Häffner, H., Hänsel, W., Hennrich, M., Blatt, R.: Realization of universal ion-trap quantum computation with decoherence-free qubits. Phys. Rev. Lett. 103, 200503 (2009)ADSCrossRefGoogle Scholar
  60. 60.
    Berry, M.V.: Transitionless quantum driving. J. Phys. A Math. Theor. 42, 365303 (2009)MathSciNetCrossRefGoogle Scholar
  61. 61.
    Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976)ADSMathSciNetCrossRefGoogle Scholar
  62. 62.
    Solinas, P., Zanardi, P., Zanghì, N.: Robustness of non-Abelian holonomic quantum gates against parametric noise. Phys. Rev. A 70, 042316 (2004)ADSMathSciNetCrossRefGoogle Scholar
  63. 63.
    Zahedinejad, E., Ghosh, J., Sanders, B.C.: High-fidelity single-shot toffoli gate via quantum control. Phys. Rev. Lett. 114, 200502 (2015)ADSCrossRefGoogle Scholar
  64. 64.
    Lin, Y., Gaebler, J.P., Reiter, F., Tan, T.R., Bowler, R., Wan, Y., Keith, A., Knill, E., Glancy, S., Coakley, K., Sørensen, A.S., Leibfried, D., Wineland, D.J.: Preparation of entangled states through Hilbert space engineering. Phys. Rev. Lett. 117, 140502 (2016)ADSCrossRefGoogle Scholar
  65. 65.
    Gaebler, J.P., Tan, T.R., Lin, Y., Wan, Y., Bowler, R., Keith, A.C., Glancy, S., Coakley, K., Knill, E., Leibfried, D., Wineland, D.J.: High-fidelity universal gate set for \({ ^{9}Be}^{+}\) ion qubits. Phys. Rev. Lett. 117, 060505 (2016)ADSCrossRefGoogle Scholar
  66. 66.
    Chen, Q., Yang, W.L., Feng, M.: Quantum gate operations in decoherence-free fashion with separate nitrogen-vacancy centers coupled to a whispering-gallery mode resonator. Eur. Phys. J. D 66, 238 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication EngineeringSouth China Normal UniversityGuangzhouChina

Personalised recommendations