Non-Gaussian swapping of entangled resources

  • Fabio Dell’Anno
  • Daniela Buono
  • Gaetano Nocerino
  • Silvio De SienaEmail author
  • Fabrizio Illuminati


We investigate the continuous-variable entanglement swapping protocol in a non-Gaussian setting, with non-Gaussian states employed either as entangled inputs and/or as swapping resources. The quality of the swapping protocol is assessed in terms of the teleportation fidelity achievable when using the swapped states as shared entangled resources in a teleportation protocol. We thus introduce a two-step cascaded quantum communication scheme that includes a swapping protocol followed by a teleportation protocol. The swapping protocol is fed by a general class of tunable non-Gaussian states, the Squeezed Bell states, which, by means of controllable free parameters, allows to pass in a continuous way from Gaussian twin beams up to maximally non-Gaussian squeezed number states. In the realistic instance, taking into account the effects of losses and imperfections, we show that as the input two-mode squeezing increases, optimized non-Gaussian swapping resources allow for a monotonically increasing enhancement of the fidelity compared to the corresponding Gaussian setting. This result suggests that the use of non-Gaussian resources can be useful to guarantee the success of continuous-variable entanglement swapping in the presence of decoherence.


Entanglement Swapping Non-Gaussianity 



We acknowledge the EU FP7 Cooperation STREP Project EQuaM—Emulators of Quantum Frustrated Magnetism, Grant Agreement No. 323714. We also acknowledge financial support from the Italian Minister of Scientific Research (MIUR) under the national PRIN program.


  1. 1.
    Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)ADSzbMATHGoogle Scholar
  2. 2.
    Briegel, H.J., Dur, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998)ADSGoogle Scholar
  3. 3.
    Braunstein, S.L., van Loock, P.: Quantum information with continuous variables. Rev. Mod. Phys. 77, 513–577 (2005)ADSMathSciNetzbMATHGoogle Scholar
  4. 4.
    Furusawa, A., Takei, N.: Quantum teleportation for continuous variables and related quantum information processing. Phys. Rep. 443, 97 (2007)ADSMathSciNetGoogle Scholar
  5. 5.
    Khalique, A., Sanders, B.C.: Practical long-distance quantum key distribution through concatenated entanglement swapping with parametric down-conversion sources. J. Opt. Soc. Am. B 32, 2382–2390 (2015)ADSGoogle Scholar
  6. 6.
    Asjad, M., Zippilli, S., Tombesi, P., Vitali, D.: Large distance continuous variable communication with concatenated swaps. Phys. Scr. 90, 074055-1–074055-10 (2015)ADSGoogle Scholar
  7. 7.
    van Loock, P., Braunstein, S.L.: Unconditional teleportation of continuous-variable entanglement. Phys. Rev. A 61, 010302(R)-1-010302(R)-4 (1999)MathSciNetGoogle Scholar
  8. 8.
    Jia, X., Su, X., Pan, Q., Gao, J., Xie, C., Peng, K.: Experimental demonstration of unconditional entanglement swapping for continuous variables. Phys. Rev. Lett. 93, 250503-1–250503-4 (2004)ADSGoogle Scholar
  9. 9.
    Yang, T., Zhang, Q., Chen, T.-Y., Lu, S., Yin, J., Pan, J.-W., Wei, Z.-Y., Tian, J.-R., Zhang, J.: Experimental synchronization of independent entangled photon sources. Phys. Rev. Lett. 96, 110501-1–110501-4 (2006)ADSGoogle Scholar
  10. 10.
    Jin, R.-B., Takeoka, M., Takagi, U., Shimizu, R., Sasaki, M.: Highly efficient entanglement swapping and teleportation at telecom wavelength. Sci. Rep. 5(9333), 1–7 (2015)Google Scholar
  11. 11.
    Takeda, S., Fuwa, M., van Loock, P., Furusawa, A.: Entanglement swapping between discrete and continuous variables. Phys. Rev. Lett. 114, 100501-1–100501-5 (2015)ADSGoogle Scholar
  12. 12.
    Parker, R.C., Joo, J., Razavi, M., Spiller, T.P.: Hybrid photonic loss resilient entanglement swapping. J. Opt. 19, 104004-1–104004-8 (2017)ADSGoogle Scholar
  13. 13.
    Hoelscher-Obermaier, J., van Loock, P.: Optimal Gaussian entanglement swapping. Phys. Rev. A 83, 012319-1–012319-9 (2011)ADSGoogle Scholar
  14. 14.
    Dell’Anno, F., De Siena, S., Albano, L., Illuminati, F.: Continuous-variable quantum teleportation with non-Gaussian resources. Phys. Rev. A 76, 022301-1–022301-11 (2007)ADSGoogle Scholar
  15. 15.
    Dell’Anno, F., De Siena, S., Illuminati, F.: Realistic continuous-variable quantum teleportation with non-Gaussian resources. Phys. Rev. A 81, 012333-1–012333-12 (2010)ADSGoogle Scholar
  16. 16.
    Dell’Anno, F., De Siena, S., Albano, L., Illuminati, F.: Continuous variable quantum teleportation with sculptured and noisy non-Gaussian resources. Eur. Phys. J. Spec. Top. 160, 115–126 (2008)Google Scholar
  17. 17.
    Dell’Anno, F., De Siena, S., Adesso, G., Illuminati, F.: Teleportation of squeezing: optimization using non-Gaussian resources. Phys. Rev. A 82, 062329-1-062329-9 (2010)ADSGoogle Scholar
  18. 18.
    Kim, M.S., Son, W., Bužek, V., Knight, P.L.: Entanglement by a beam splitter: nonclassicality as a prerequisite for entanglement. Phys. Rev. A 65, 032323-1–032323-7 (2002)ADSGoogle Scholar
  19. 19.
    Dodonov, V.V., de Souza, L.A.: Decoherence of superpositions of displaced number states. J. Opt. B Quantum Semiclass. Opt. 7, S490–S499 (2005)ADSGoogle Scholar
  20. 20.
    Cerf, N.J., Krüger, O., Navez, P., Werner, R.F., Wolf, M.M.: Non-Gaussian cloning of quantum coherent states is optimal. Phys. Rev. Lett. 95, 070501-1–070501-4 (2005)ADSGoogle Scholar
  21. 21.
    Opatrný, T., Kurizki, G., Welsch, D.-G.: Improvement on teleportation of continuous variables by photon subtraction via conditional measurement. Phys. Rev. A 61, 032302-1–032302-7 (2000)ADSGoogle Scholar
  22. 22.
    Cochrane, P.T., Ralph, T.C., Milburn, G.J.: Teleportation improvement by conditional measurements on the two-mode squeezed vacuum. Phys. Rev. A 65, 062306-1–062306-6 (2002)ADSGoogle Scholar
  23. 23.
    Olivares, S., Paris, M.G.A., Bonifacio, R.: Teleportation improvement by inconclusive photon subtraction. Phys. Rev. A 67, 032314-1–032314-5 (2003)ADSGoogle Scholar
  24. 24.
    Kitagawa, A., Takeoka, M., Sasaki, M., Chefles, A.: Entanglement evaluation of non-Gaussian states generated by photon subtraction from squeezed states. Phys. Rev. A 73, 042310-1–042310-12 (2006)ADSGoogle Scholar
  25. 25.
    Yang, Y., Li, F.L.: Entanglement properties of non-Gaussian resources generated via photon subtraction and addition and continuous-variable quantum-teleportation improvement. Phys. Rev. A 80, 022315-1–022315-9 (2009)ADSGoogle Scholar
  26. 26.
    Adesso, G., Dell’Anno, F., De Siena, S., Illuminati, F., Souza, L.A.M.: Optimal estimation of losses at the ultimate quantum limit with non-Gaussian states. Phys. Rev. A 79, 040305(R)-1–040305(R)-4 (2009)ADSGoogle Scholar
  27. 27.
    Menicucci, N.C., van Loock, P., Gu, M., Weedbrook, C., Ralph, T.C., Nielsen, M.A.: Universal quantum computation with continuous-variable cluster states. Phys. Rev. Lett. 97, 110501-1–110501-4 (2006)ADSGoogle Scholar
  28. 28.
    Bartley, T.J., Walmsley, I.A.: Directly comparing entanglement-enhancing non-Gaussian operations. New J. Phys. 17, 023038-1-023038-26 (2015)ADSGoogle Scholar
  29. 29.
    Wang, S., Hou, L.-L., Chen, X.-F., Xu, X.-F.: Continuous-variable quantum teleportation with non-Gaussian entangled states generated via multiple-photon subtraction and addition. Phys. Rev. A 91, 063832-1-063832-12 (2015)ADSGoogle Scholar
  30. 30.
    Seshadreesan, K.P., Dowling, J.P., Agarwal, G.S.: Non-Gaussian entangled states and quantum teleportation of Schroedinger-cat states. Phys. Scr. 90, 074029-1-074029-12 (2015)ADSGoogle Scholar
  31. 31.
    Ottaviani, C., Lupo, C., Ferraro, A., Paternostro, M., Pirandola, S.: Multipartite Entanglement Swapping and Mechanical Cluster States. arXiv:1712.08085v1 [quant-ph] 1-5 (2017)
  32. 32.
    Hu, L., Liao, Z., Zubairy, M.S.: Continuous-variable entanglement via multiphoton catalysis. Phys. Rev. A 95, 012310–01325 (2017)ADSGoogle Scholar
  33. 33.
    Fan, L., Zubairy, M.S.: Quantum illumination using non-Gaussian states generated by photon subtraction and photon addition. Phys. Rev. A 98, 012319–012326 (2018)ADSGoogle Scholar
  34. 34.
    Wolf, M.M., Giedke, G., Cirac, J.I.: Extremality of Gaussian quantum states. Phys. Rev. Lett 96, 080502-1–080502-4 (2006)ADSMathSciNetGoogle Scholar
  35. 35.
    Eisert, J., Scheel, S., Plenio, M.B.: Distilling Gaussian states with Gaussian operations is impossible. Phys. Rev. Lett. 89, 137903-1–137903-4 (2002)ADSMathSciNetzbMATHGoogle Scholar
  36. 36.
    Ohliger, M., Kieling, K., Eisert, J.: Limitations of quantum computing with Gaussian cluster states. Phys. Rev. A 82, 042336-1–042336-12 (2010)ADSGoogle Scholar
  37. 37.
    Bartlett, S., Sanders, B., Braunstein, S., Nemoto, K.: Efficient classical simulation of continuous variable quantum information processes. Phys. Rev. Lett. 88, 097904 (2002)ADSGoogle Scholar
  38. 38.
    Eisert, J., Scheel, S., Plenio, M.B.: Distilling Gaussian states with Gaussian operations is impossible. Phys. Rev. Lett. 89, 137903 (2002)ADSMathSciNetzbMATHGoogle Scholar
  39. 39.
    Hage, B., Samblowski, A., Di Guglielmo, J., Franzen, A., Fiurášek, J., Schnabel, R.: Preparation of distilled and purified continuous-variable entangled states. Nat. Phys. 4, 915–918 (2008)Google Scholar
  40. 40.
    Gomes, R.M., Salles, A., Toscano, F., Souto Ribeiro, P.H., Walborn, S.P.: Quantum entanglement beyond Gaussian criteria. PNAS 106(51), 21517–21520 (2009)ADSGoogle Scholar
  41. 41.
    Tyc, T., Korolkova, N.: Highly non-Gaussian states created via cross-Kerr nonlinearity. New J. Phys. 10, 023041-1–023041-13 (2008)ADSGoogle Scholar
  42. 42.
    Dell’Anno, F., De Siena, S., Illuminati, F.: Structure of multiphoton quantum optics. I. Canonical formalism and homodyne squeezed states. Phys. Rev. A 69, 033812-1–033812-11 (2004)ADSGoogle Scholar
  43. 43.
    Dell’Anno, F., De Siena, S., Illuminati, F.: Structure of multiphoton quantum optics. II. Bipartite systems, physical processes, and heterodyne squeezed states. Phys. Rev. A 69, 033813-1–033813-16 (2004)ADSGoogle Scholar
  44. 44.
    Agarwal, G.S., Tara, K.: Nonclassical properties of states generated by the excitations on a coherent state. Phys. Rev. A 43, 492–497 (1991)ADSGoogle Scholar
  45. 45.
    Bjork, G., Yamamoto, Y.: Generation of nonclassical photon states using correlated photon pairs and linear feedforward. Phys. Rev. A 37, 4229–4239 (1988)ADSGoogle Scholar
  46. 46.
    Zhang, Z., Fan, H.: Properties of states generated by excitations on a squeezed vacuum state. Phys. Lett. A 165, 14–18 (1992)ADSMathSciNetGoogle Scholar
  47. 47.
    Dakna, M., Anhut, T., Opatrný, T., Knöll, L., Welsch, D.G.: Generating Schrdinger-cat-like states by means of conditional measurements on a beam splitter. Phys. Rev. A 55, 3184–3194 (1997)ADSGoogle Scholar
  48. 48.
    Kim, M.S., Park, E., Knight, P.L., Jeong, H.: Nonclassicality of a photon-subtracted Gaussian field. Phys. Rev. A 71, 043805-1–043805-6 (2005)ADSGoogle Scholar
  49. 49.
    Menzies, D., Filip, R.: Gaussian-optimized preparation of non-Gaussian pure states. Phys. Rev. A 79, 012313-1–012313-7 (2009)ADSGoogle Scholar
  50. 50.
    Lee, S.-Y., Nha, H.: Quantum state engineering by a coherent superposition of photon subtraction and addition. Phys. Rev. A 82, 053812-1-053812-7 (2010)ADSGoogle Scholar
  51. 51.
    Genoni, M.G., Beduini, F.A., Allevi, A., Bondani, M., Olivares, S., Paris, M.G.A.: Non-Gaussian states by conditional measurements. Phys. Scr. T140, 014007-1–014007-5 (2010)ADSGoogle Scholar
  52. 52.
    Lee, S.-Y., Ji, S.-W., Kim, H.-J., Nha, H.: Enhancing quantum entanglement for continuous variables by a coherent superposition of photon subtraction and addition. Phys. Rev. A 84, 012302-1-012302-6 (2011)ADSGoogle Scholar
  53. 53.
    Xu, X.-X., Yuan, H.-C., Fan, H.-Y.: Generating Hermite polynomial excited squeezed states by means of conditional measurements on a beam splitter. J. Opt. Soc. Am. B 32, 1146–1154 (2015)ADSGoogle Scholar
  54. 54.
    Bose, S., Kumar, M.S.: Quantitative study of beam-splitter-generated entanglement from input states with multiple nonclassicality-inducing operations. Phys. Rev. A 95, 012330–012338 (2017)ADSGoogle Scholar
  55. 55.
    Zavatta, A., Viciani, S., Bellini, M.: Quantum-to-classical transition with single-photon-added coherent states of light. Science 306, 660–662 (2004)ADSGoogle Scholar
  56. 56.
    Lvovsky, A.I., Babichev, S.A.: Synthesis and tomographic characterization of the displaced Fock state of light. Phys. Rev. A 66, 011801(R)-1–011801(R)-4 (2002)ADSGoogle Scholar
  57. 57.
    Wenger, J., Tualle-Brouri, R., Grangier, P.: Non-Gaussian statistics from individual pulses of squeezed light. Phys. Rev. Lett. 92, 153601-1–153601-4 (2004)ADSGoogle Scholar
  58. 58.
    D’Auria, V., Chiummo, A., De Laurentis, M., Porzio, A., Solimeno, S., Paris, M.G.A.: Tomographic characterization of OPO sources close to threshold. Opt. Expr. 13, 948–956 (2005)ADSGoogle Scholar
  59. 59.
    Ourjoumtsev, A., Dantan, A., Tualle-Brouri, R., Grangier, P.: Increasing entanglement between Gaussian states by coherent photon subtraction. Phys. Rev. Lett. 98, 030502-1–030502-4 (2007)ADSGoogle Scholar
  60. 60.
    Parigi, V., Zavatta, A., Kim, M., Bellini, M.: Probing quantum commutation rules by addition and subtraction of single photons to/from a light field. Science 317, 1890–1893 (2007)ADSGoogle Scholar
  61. 61.
    Ourjoumtsev, A., Jeong, H., Tualle-Brouri, R., Grangier, P.: Generation of optical Schrdinger cats from photon number states. Nature 448, 784–786 (2007)ADSGoogle Scholar
  62. 62.
    D’Auria, V., de Lisio, C., Porzio, A., Solimeno, S., Anwar, J., Paris, M.G.A.: Non-Gaussian states produced by close-to-threshold optical parametric oscillators: role of classical and quantum fluctuations. Phys. Rev. A 81, 033846-1-033846-9 (2010)ADSGoogle Scholar
  63. 63.
    Etesse, J., Bouillard, M., Kanseri, B., Tualle-Brouri, R.: Experimental generation of squeezed cat states with an operation allowing iterative growth. Phys. Rev. Lett. 114, 193602-1–193602-5 (2015)ADSGoogle Scholar
  64. 64.
    Huang, K., Le Jeannic, H., Verma, V.B., Shaw, M.D., Marsili, F., Nam, S.W., Wu, E., Zeng, H., Morin, O., Laurat, J.: Experimental quantum state engineering with time-separated heraldings from a continuous-wave light source: a temporal-mode analysis. Phys. Rev. A 93, 013838-1–013838-8 (2016)ADSGoogle Scholar
  65. 65.
    Mari, A., Kieling, K., Nielsen, B.M., Polzik, E.S., Eisert, J.: Directly estimating nonclassicality. Phys. Rev. Lett. 106, 010403–010407 (2011)ADSGoogle Scholar
  66. 66.
    Miranowicz, A., Bartkowiak, M., Wang, X., Liu, Y.-X., Nori, F.: Testing nonclassicality in multimode fields: a unified derivation of classical inequalities. Phys. Rev. A 82, 013824–013838 (2010)ADSGoogle Scholar
  67. 67.
    Ivan, J.S., Chaturvedi, S., Ercolessi, E., Marmo, G., Morandi, G., Mukunda, N., Simon, R.: Entanglement and nonclassicality for multimode radiation-field states. Phys. Rev. A 83, 032118–032138 (2011)ADSGoogle Scholar
  68. 68.
    Park, J., Zhang, J., Lee, J., Ji, S.-W., Um, M., Lv, D., Kim, K., Nha, H.: Testing nonclassicality and non-Gaussianity in phase space. Phys. Rev. Lett. 114, 190402–190407 (2015)ADSGoogle Scholar
  69. 69.
    Kühn, B., Vogel, W.: Quantum non-Gaussianity and quantification of nonclassicality. Phys. Rev. A 97, 053823–053830 (2018)ADSGoogle Scholar
  70. 70.
    Ivan, J.S., Kumar, M.S., Simon, R.: A measure of non-Gaussianity for quantum states. Quantum Inf. Process. 11, 853 (2012)MathSciNetzbMATHGoogle Scholar
  71. 71.
    Genoni, M.G., Paris, M.G.A., Banaszek, K.: Measure of the non-Gaussian character of a quantum state. Phys. Rev. A 76, 042327–042333 (2007)ADSGoogle Scholar
  72. 72.
    Genoni, M.G., Paris, M.G.A., Banaszek, K.: Quantifying the non-Gaussian character of a quantum state by quantum relative entropy. Phys. Rev. A 78, 060303–060307 (2008)ADSMathSciNetGoogle Scholar
  73. 73.
    Genoni, M.G., Paris, M.G.A.: Quantifying non-Gaussianity for quantum information. Phys. Rev. A 82, 052341–052360 (2010)ADSGoogle Scholar
  74. 74.
    Barbieri, M., Spagnolo, N., Genoni, M.G., Ferreyrol, F., Blandino, R., Paris, M.G.A., Grangier, P., Tualle-Brouri, R.: Non-Gaussianity of quantum states: an experimental test on single-photon-added coherent states. Phys. Rev. A 82, 063833–063838 (2010)ADSGoogle Scholar
  75. 75.
    Marian, P., Marian, T.A.: Relative entropy is an exact measure of non-Gaussianity. Phys. Rev. A 88, 012322–012328 (2013)ADSGoogle Scholar
  76. 76.
    Hughes, C., Genoni, M.G., Tufarelli, T., Paris, M.G.A., Kim, M.S.: Quantum non-Gaussianity witnesses in phase space. Phys. Rev. A 90, 013810–013819 (2014)ADSGoogle Scholar
  77. 77.
    Dell’Anno, F., De Siena, S., Illuminati, F.: Multiphoton quantum optics and quantum state engineering. Phys. Rep. 428, 53–168 (2006)ADSMathSciNetGoogle Scholar
  78. 78.
    Dell’Anno, F., Buono, D., Nocerino, G., Porzio, A., Solimeno, S., De Siena, S., Illuminati, F.: Tunable non-Gaussian resources for continuous-variable quantum technologies. Phys. Rev. A 88, 043818-1–043818-13 (2013)ADSGoogle Scholar
  79. 79.
    Xiang, S.-H., Song, K.-H.: Quantum non-Gaussianity of single-mode Schrdinger cat states based on Kurtosis. EPJD 69, 260 (2015)ADSGoogle Scholar
  80. 80.
    Park, J., Lee, J., Ji, S.-W., Nha, H.: Quantifying non-Gaussianity of quantum-state correlation. Phys. Rev. A 96, 052324–052333 (2017)ADSGoogle Scholar
  81. 81.
    Leonhardt, U., Paul, H.: Realistic optical homodyne measurements and quasiprobability distributions. Phys. Rev. A 48, 4598–4604 (1993)ADSGoogle Scholar
  82. 82.
    Marian, P., Marian, T.A.: Continuous-variable teleportation in the characteristic-function description. Phys. Rev. A 74, 042306-1–042306-5 (2006)ADSGoogle Scholar
  83. 83.
    Vahlbruch, H., Mehmet, M., Chelkowski, S., Hage, B., Franzen, A., Lastzka, N., Gossler, S., Danzmann, K., Schnabel, R.: Observation of squeezed light with 10-dB quantum-noise reduction. Phys. Rev. Lett 100, 033602-1–033602-4 (2008)ADSGoogle Scholar
  84. 84.
    Vahlbruch, H., Khalaidovski, A., Lastzka, N., Gräf, C., Danzmann, K., Schnabel, R.: The GEO600 squeezed light source. Class. Quantum Grav. 27, 084027-1–084027-8 (2010)ADSGoogle Scholar
  85. 85.
    Eberle, T., Steinlechner, S., Bauchrowitz, J., Händchen, V., Vahlbruch, H., Mehmet, M., Müller-Ebhardt, H., Schnabel, R.: Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection. Phys. Rev. Lett. 104, 251102-1–251102-4 (2010)ADSGoogle Scholar
  86. 86.
    Mehmet, M., Ast, S., Eberle, T., Steinlechner, S., Vahlbruch, H., Schnabel, R.: Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB. Opt. Express 19, 25764–25772 (2011)ADSGoogle Scholar
  87. 87.
    Vollmer, C.E., Baune, C., Samblowski, A., Eberle, T., Händchen, V., Fiurásek, J., Schnabel, R.: Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm. Phys. Rev. Lett. 112, 073602-1-073602-5 (2014)ADSGoogle Scholar
  88. 88.
    Vahlbruch, H., Mehmet, M., Danzmann, K., Schnabel, R.: Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency. Phys. Rev. Lett. 117, 110801-1–110801-5 (2016)ADSGoogle Scholar
  89. 89.
    Andersen, U.L., Gehring, T., Marquardt, C., Leuchs, G.: 30 Years of squeezed light generation. Phys. Scr. 91, 053001-1–053001-11 (2016)ADSGoogle Scholar
  90. 90.
    Hu, L.-Y., Liao, Z., Ma, S., Zubairy, M.S.: Optimal fidelity of teleportation with continuous variables using three tunable parameters in a realistic environment. Phys. Rev. A 93, 033807-1–033807-10 (2016)ADSGoogle Scholar
  91. 91.
    Walls, D., Milburn, G.: Quantum Optics. Springer, Berlin (1994)zbMATHGoogle Scholar
  92. 92.
    Serafini, A., Paris, M.G.A., Illuminati, F., De Siena, S.: Quantifying decoherence in continuous variable systems. J. Opt. B Quantum Semiclass. Opt. 7, R19–R36 (2005)ADSGoogle Scholar
  93. 93.
    Bowen, W.P., Treps, N., Buchler, B.C., Schnabel, R., Ralph, T.C., Symul, T., Lam, P.K.: Unity gain and nonunity gain quantum teleportation. IEEE J. Sel. Top. Quant. 9, 1519–1532 (2003)Google Scholar
  94. 94.
    Adesso, G., Illuminati, F.: Equivalence between entanglement and the optimal fidelity of continuous variable teleportation. Phys. Rev. Lett. 95, 150503-1–150503-4 (2005)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Gruppo collegato di SalernoINFN Sezione di NapoliNapoliItaly
  2. 2.Liceo Statale V. De CaprariisAtripaldaItaly
  3. 3.Dipartimento di Ingegneria IndustrialeUniversità degli Studi di SalernoFiscianoItaly
  4. 4.Trenitalia spa, DPR Campania, Ufficio di Ingegneria della ManutenzioneIMC Campi FlegreiNaplesItaly
  5. 5.Rome Unit, Istituto di NanotecnologiaConsiglio Nazionale delle RicercheRomeItaly

Personalised recommendations