Non-Gaussian swapping of entangled resources
Abstract
We investigate the continuous-variable entanglement swapping protocol in a non-Gaussian setting, with non-Gaussian states employed either as entangled inputs and/or as swapping resources. The quality of the swapping protocol is assessed in terms of the teleportation fidelity achievable when using the swapped states as shared entangled resources in a teleportation protocol. We thus introduce a two-step cascaded quantum communication scheme that includes a swapping protocol followed by a teleportation protocol. The swapping protocol is fed by a general class of tunable non-Gaussian states, the Squeezed Bell states, which, by means of controllable free parameters, allows to pass in a continuous way from Gaussian twin beams up to maximally non-Gaussian squeezed number states. In the realistic instance, taking into account the effects of losses and imperfections, we show that as the input two-mode squeezing increases, optimized non-Gaussian swapping resources allow for a monotonically increasing enhancement of the fidelity compared to the corresponding Gaussian setting. This result suggests that the use of non-Gaussian resources can be useful to guarantee the success of continuous-variable entanglement swapping in the presence of decoherence.
Keywords
Entanglement Swapping Non-GaussianityNotes
Acknowledgements
We acknowledge the EU FP7 Cooperation STREP Project EQuaM—Emulators of Quantum Frustrated Magnetism, Grant Agreement No. 323714. We also acknowledge financial support from the Italian Minister of Scientific Research (MIUR) under the national PRIN program.
References
- 1.Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)ADSzbMATHGoogle Scholar
- 2.Briegel, H.J., Dur, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998)ADSGoogle Scholar
- 3.Braunstein, S.L., van Loock, P.: Quantum information with continuous variables. Rev. Mod. Phys. 77, 513–577 (2005)ADSMathSciNetzbMATHGoogle Scholar
- 4.Furusawa, A., Takei, N.: Quantum teleportation for continuous variables and related quantum information processing. Phys. Rep. 443, 97 (2007)ADSMathSciNetGoogle Scholar
- 5.Khalique, A., Sanders, B.C.: Practical long-distance quantum key distribution through concatenated entanglement swapping with parametric down-conversion sources. J. Opt. Soc. Am. B 32, 2382–2390 (2015)ADSGoogle Scholar
- 6.Asjad, M., Zippilli, S., Tombesi, P., Vitali, D.: Large distance continuous variable communication with concatenated swaps. Phys. Scr. 90, 074055-1–074055-10 (2015)ADSGoogle Scholar
- 7.van Loock, P., Braunstein, S.L.: Unconditional teleportation of continuous-variable entanglement. Phys. Rev. A 61, 010302(R)-1-010302(R)-4 (1999)MathSciNetGoogle Scholar
- 8.Jia, X., Su, X., Pan, Q., Gao, J., Xie, C., Peng, K.: Experimental demonstration of unconditional entanglement swapping for continuous variables. Phys. Rev. Lett. 93, 250503-1–250503-4 (2004)ADSGoogle Scholar
- 9.Yang, T., Zhang, Q., Chen, T.-Y., Lu, S., Yin, J., Pan, J.-W., Wei, Z.-Y., Tian, J.-R., Zhang, J.: Experimental synchronization of independent entangled photon sources. Phys. Rev. Lett. 96, 110501-1–110501-4 (2006)ADSGoogle Scholar
- 10.Jin, R.-B., Takeoka, M., Takagi, U., Shimizu, R., Sasaki, M.: Highly efficient entanglement swapping and teleportation at telecom wavelength. Sci. Rep. 5(9333), 1–7 (2015)Google Scholar
- 11.Takeda, S., Fuwa, M., van Loock, P., Furusawa, A.: Entanglement swapping between discrete and continuous variables. Phys. Rev. Lett. 114, 100501-1–100501-5 (2015)ADSGoogle Scholar
- 12.Parker, R.C., Joo, J., Razavi, M., Spiller, T.P.: Hybrid photonic loss resilient entanglement swapping. J. Opt. 19, 104004-1–104004-8 (2017)ADSGoogle Scholar
- 13.Hoelscher-Obermaier, J., van Loock, P.: Optimal Gaussian entanglement swapping. Phys. Rev. A 83, 012319-1–012319-9 (2011)ADSGoogle Scholar
- 14.Dell’Anno, F., De Siena, S., Albano, L., Illuminati, F.: Continuous-variable quantum teleportation with non-Gaussian resources. Phys. Rev. A 76, 022301-1–022301-11 (2007)ADSGoogle Scholar
- 15.Dell’Anno, F., De Siena, S., Illuminati, F.: Realistic continuous-variable quantum teleportation with non-Gaussian resources. Phys. Rev. A 81, 012333-1–012333-12 (2010)ADSGoogle Scholar
- 16.Dell’Anno, F., De Siena, S., Albano, L., Illuminati, F.: Continuous variable quantum teleportation with sculptured and noisy non-Gaussian resources. Eur. Phys. J. Spec. Top. 160, 115–126 (2008)Google Scholar
- 17.Dell’Anno, F., De Siena, S., Adesso, G., Illuminati, F.: Teleportation of squeezing: optimization using non-Gaussian resources. Phys. Rev. A 82, 062329-1-062329-9 (2010)ADSGoogle Scholar
- 18.Kim, M.S., Son, W., Bužek, V., Knight, P.L.: Entanglement by a beam splitter: nonclassicality as a prerequisite for entanglement. Phys. Rev. A 65, 032323-1–032323-7 (2002)ADSGoogle Scholar
- 19.Dodonov, V.V., de Souza, L.A.: Decoherence of superpositions of displaced number states. J. Opt. B Quantum Semiclass. Opt. 7, S490–S499 (2005)ADSGoogle Scholar
- 20.Cerf, N.J., Krüger, O., Navez, P., Werner, R.F., Wolf, M.M.: Non-Gaussian cloning of quantum coherent states is optimal. Phys. Rev. Lett. 95, 070501-1–070501-4 (2005)ADSGoogle Scholar
- 21.Opatrný, T., Kurizki, G., Welsch, D.-G.: Improvement on teleportation of continuous variables by photon subtraction via conditional measurement. Phys. Rev. A 61, 032302-1–032302-7 (2000)ADSGoogle Scholar
- 22.Cochrane, P.T., Ralph, T.C., Milburn, G.J.: Teleportation improvement by conditional measurements on the two-mode squeezed vacuum. Phys. Rev. A 65, 062306-1–062306-6 (2002)ADSGoogle Scholar
- 23.Olivares, S., Paris, M.G.A., Bonifacio, R.: Teleportation improvement by inconclusive photon subtraction. Phys. Rev. A 67, 032314-1–032314-5 (2003)ADSGoogle Scholar
- 24.Kitagawa, A., Takeoka, M., Sasaki, M., Chefles, A.: Entanglement evaluation of non-Gaussian states generated by photon subtraction from squeezed states. Phys. Rev. A 73, 042310-1–042310-12 (2006)ADSGoogle Scholar
- 25.Yang, Y., Li, F.L.: Entanglement properties of non-Gaussian resources generated via photon subtraction and addition and continuous-variable quantum-teleportation improvement. Phys. Rev. A 80, 022315-1–022315-9 (2009)ADSGoogle Scholar
- 26.Adesso, G., Dell’Anno, F., De Siena, S., Illuminati, F., Souza, L.A.M.: Optimal estimation of losses at the ultimate quantum limit with non-Gaussian states. Phys. Rev. A 79, 040305(R)-1–040305(R)-4 (2009)ADSGoogle Scholar
- 27.Menicucci, N.C., van Loock, P., Gu, M., Weedbrook, C., Ralph, T.C., Nielsen, M.A.: Universal quantum computation with continuous-variable cluster states. Phys. Rev. Lett. 97, 110501-1–110501-4 (2006)ADSGoogle Scholar
- 28.Bartley, T.J., Walmsley, I.A.: Directly comparing entanglement-enhancing non-Gaussian operations. New J. Phys. 17, 023038-1-023038-26 (2015)ADSGoogle Scholar
- 29.Wang, S., Hou, L.-L., Chen, X.-F., Xu, X.-F.: Continuous-variable quantum teleportation with non-Gaussian entangled states generated via multiple-photon subtraction and addition. Phys. Rev. A 91, 063832-1-063832-12 (2015)ADSGoogle Scholar
- 30.Seshadreesan, K.P., Dowling, J.P., Agarwal, G.S.: Non-Gaussian entangled states and quantum teleportation of Schroedinger-cat states. Phys. Scr. 90, 074029-1-074029-12 (2015)ADSGoogle Scholar
- 31.Ottaviani, C., Lupo, C., Ferraro, A., Paternostro, M., Pirandola, S.: Multipartite Entanglement Swapping and Mechanical Cluster States. arXiv:1712.08085v1 [quant-ph] 1-5 (2017)
- 32.Hu, L., Liao, Z., Zubairy, M.S.: Continuous-variable entanglement via multiphoton catalysis. Phys. Rev. A 95, 012310–01325 (2017)ADSGoogle Scholar
- 33.Fan, L., Zubairy, M.S.: Quantum illumination using non-Gaussian states generated by photon subtraction and photon addition. Phys. Rev. A 98, 012319–012326 (2018)ADSGoogle Scholar
- 34.Wolf, M.M., Giedke, G., Cirac, J.I.: Extremality of Gaussian quantum states. Phys. Rev. Lett 96, 080502-1–080502-4 (2006)ADSMathSciNetGoogle Scholar
- 35.Eisert, J., Scheel, S., Plenio, M.B.: Distilling Gaussian states with Gaussian operations is impossible. Phys. Rev. Lett. 89, 137903-1–137903-4 (2002)ADSMathSciNetzbMATHGoogle Scholar
- 36.Ohliger, M., Kieling, K., Eisert, J.: Limitations of quantum computing with Gaussian cluster states. Phys. Rev. A 82, 042336-1–042336-12 (2010)ADSGoogle Scholar
- 37.Bartlett, S., Sanders, B., Braunstein, S., Nemoto, K.: Efficient classical simulation of continuous variable quantum information processes. Phys. Rev. Lett. 88, 097904 (2002)ADSGoogle Scholar
- 38.Eisert, J., Scheel, S., Plenio, M.B.: Distilling Gaussian states with Gaussian operations is impossible. Phys. Rev. Lett. 89, 137903 (2002)ADSMathSciNetzbMATHGoogle Scholar
- 39.Hage, B., Samblowski, A., Di Guglielmo, J., Franzen, A., Fiurášek, J., Schnabel, R.: Preparation of distilled and purified continuous-variable entangled states. Nat. Phys. 4, 915–918 (2008)Google Scholar
- 40.Gomes, R.M., Salles, A., Toscano, F., Souto Ribeiro, P.H., Walborn, S.P.: Quantum entanglement beyond Gaussian criteria. PNAS 106(51), 21517–21520 (2009)ADSGoogle Scholar
- 41.Tyc, T., Korolkova, N.: Highly non-Gaussian states created via cross-Kerr nonlinearity. New J. Phys. 10, 023041-1–023041-13 (2008)ADSGoogle Scholar
- 42.Dell’Anno, F., De Siena, S., Illuminati, F.: Structure of multiphoton quantum optics. I. Canonical formalism and homodyne squeezed states. Phys. Rev. A 69, 033812-1–033812-11 (2004)ADSGoogle Scholar
- 43.Dell’Anno, F., De Siena, S., Illuminati, F.: Structure of multiphoton quantum optics. II. Bipartite systems, physical processes, and heterodyne squeezed states. Phys. Rev. A 69, 033813-1–033813-16 (2004)ADSGoogle Scholar
- 44.Agarwal, G.S., Tara, K.: Nonclassical properties of states generated by the excitations on a coherent state. Phys. Rev. A 43, 492–497 (1991)ADSGoogle Scholar
- 45.Bjork, G., Yamamoto, Y.: Generation of nonclassical photon states using correlated photon pairs and linear feedforward. Phys. Rev. A 37, 4229–4239 (1988)ADSGoogle Scholar
- 46.Zhang, Z., Fan, H.: Properties of states generated by excitations on a squeezed vacuum state. Phys. Lett. A 165, 14–18 (1992)ADSMathSciNetGoogle Scholar
- 47.Dakna, M., Anhut, T., Opatrný, T., Knöll, L., Welsch, D.G.: Generating Schrdinger-cat-like states by means of conditional measurements on a beam splitter. Phys. Rev. A 55, 3184–3194 (1997)ADSGoogle Scholar
- 48.Kim, M.S., Park, E., Knight, P.L., Jeong, H.: Nonclassicality of a photon-subtracted Gaussian field. Phys. Rev. A 71, 043805-1–043805-6 (2005)ADSGoogle Scholar
- 49.Menzies, D., Filip, R.: Gaussian-optimized preparation of non-Gaussian pure states. Phys. Rev. A 79, 012313-1–012313-7 (2009)ADSGoogle Scholar
- 50.Lee, S.-Y., Nha, H.: Quantum state engineering by a coherent superposition of photon subtraction and addition. Phys. Rev. A 82, 053812-1-053812-7 (2010)ADSGoogle Scholar
- 51.Genoni, M.G., Beduini, F.A., Allevi, A., Bondani, M., Olivares, S., Paris, M.G.A.: Non-Gaussian states by conditional measurements. Phys. Scr. T140, 014007-1–014007-5 (2010)ADSGoogle Scholar
- 52.Lee, S.-Y., Ji, S.-W., Kim, H.-J., Nha, H.: Enhancing quantum entanglement for continuous variables by a coherent superposition of photon subtraction and addition. Phys. Rev. A 84, 012302-1-012302-6 (2011)ADSGoogle Scholar
- 53.Xu, X.-X., Yuan, H.-C., Fan, H.-Y.: Generating Hermite polynomial excited squeezed states by means of conditional measurements on a beam splitter. J. Opt. Soc. Am. B 32, 1146–1154 (2015)ADSGoogle Scholar
- 54.Bose, S., Kumar, M.S.: Quantitative study of beam-splitter-generated entanglement from input states with multiple nonclassicality-inducing operations. Phys. Rev. A 95, 012330–012338 (2017)ADSGoogle Scholar
- 55.Zavatta, A., Viciani, S., Bellini, M.: Quantum-to-classical transition with single-photon-added coherent states of light. Science 306, 660–662 (2004)ADSGoogle Scholar
- 56.Lvovsky, A.I., Babichev, S.A.: Synthesis and tomographic characterization of the displaced Fock state of light. Phys. Rev. A 66, 011801(R)-1–011801(R)-4 (2002)ADSGoogle Scholar
- 57.Wenger, J., Tualle-Brouri, R., Grangier, P.: Non-Gaussian statistics from individual pulses of squeezed light. Phys. Rev. Lett. 92, 153601-1–153601-4 (2004)ADSGoogle Scholar
- 58.D’Auria, V., Chiummo, A., De Laurentis, M., Porzio, A., Solimeno, S., Paris, M.G.A.: Tomographic characterization of OPO sources close to threshold. Opt. Expr. 13, 948–956 (2005)ADSGoogle Scholar
- 59.Ourjoumtsev, A., Dantan, A., Tualle-Brouri, R., Grangier, P.: Increasing entanglement between Gaussian states by coherent photon subtraction. Phys. Rev. Lett. 98, 030502-1–030502-4 (2007)ADSGoogle Scholar
- 60.Parigi, V., Zavatta, A., Kim, M., Bellini, M.: Probing quantum commutation rules by addition and subtraction of single photons to/from a light field. Science 317, 1890–1893 (2007)ADSGoogle Scholar
- 61.Ourjoumtsev, A., Jeong, H., Tualle-Brouri, R., Grangier, P.: Generation of optical Schrdinger cats from photon number states. Nature 448, 784–786 (2007)ADSGoogle Scholar
- 62.D’Auria, V., de Lisio, C., Porzio, A., Solimeno, S., Anwar, J., Paris, M.G.A.: Non-Gaussian states produced by close-to-threshold optical parametric oscillators: role of classical and quantum fluctuations. Phys. Rev. A 81, 033846-1-033846-9 (2010)ADSGoogle Scholar
- 63.Etesse, J., Bouillard, M., Kanseri, B., Tualle-Brouri, R.: Experimental generation of squeezed cat states with an operation allowing iterative growth. Phys. Rev. Lett. 114, 193602-1–193602-5 (2015)ADSGoogle Scholar
- 64.Huang, K., Le Jeannic, H., Verma, V.B., Shaw, M.D., Marsili, F., Nam, S.W., Wu, E., Zeng, H., Morin, O., Laurat, J.: Experimental quantum state engineering with time-separated heraldings from a continuous-wave light source: a temporal-mode analysis. Phys. Rev. A 93, 013838-1–013838-8 (2016)ADSGoogle Scholar
- 65.Mari, A., Kieling, K., Nielsen, B.M., Polzik, E.S., Eisert, J.: Directly estimating nonclassicality. Phys. Rev. Lett. 106, 010403–010407 (2011)ADSGoogle Scholar
- 66.Miranowicz, A., Bartkowiak, M., Wang, X., Liu, Y.-X., Nori, F.: Testing nonclassicality in multimode fields: a unified derivation of classical inequalities. Phys. Rev. A 82, 013824–013838 (2010)ADSGoogle Scholar
- 67.Ivan, J.S., Chaturvedi, S., Ercolessi, E., Marmo, G., Morandi, G., Mukunda, N., Simon, R.: Entanglement and nonclassicality for multimode radiation-field states. Phys. Rev. A 83, 032118–032138 (2011)ADSGoogle Scholar
- 68.Park, J., Zhang, J., Lee, J., Ji, S.-W., Um, M., Lv, D., Kim, K., Nha, H.: Testing nonclassicality and non-Gaussianity in phase space. Phys. Rev. Lett. 114, 190402–190407 (2015)ADSGoogle Scholar
- 69.Kühn, B., Vogel, W.: Quantum non-Gaussianity and quantification of nonclassicality. Phys. Rev. A 97, 053823–053830 (2018)ADSGoogle Scholar
- 70.Ivan, J.S., Kumar, M.S., Simon, R.: A measure of non-Gaussianity for quantum states. Quantum Inf. Process. 11, 853 (2012)MathSciNetzbMATHGoogle Scholar
- 71.Genoni, M.G., Paris, M.G.A., Banaszek, K.: Measure of the non-Gaussian character of a quantum state. Phys. Rev. A 76, 042327–042333 (2007)ADSGoogle Scholar
- 72.Genoni, M.G., Paris, M.G.A., Banaszek, K.: Quantifying the non-Gaussian character of a quantum state by quantum relative entropy. Phys. Rev. A 78, 060303–060307 (2008)ADSMathSciNetGoogle Scholar
- 73.Genoni, M.G., Paris, M.G.A.: Quantifying non-Gaussianity for quantum information. Phys. Rev. A 82, 052341–052360 (2010)ADSGoogle Scholar
- 74.Barbieri, M., Spagnolo, N., Genoni, M.G., Ferreyrol, F., Blandino, R., Paris, M.G.A., Grangier, P., Tualle-Brouri, R.: Non-Gaussianity of quantum states: an experimental test on single-photon-added coherent states. Phys. Rev. A 82, 063833–063838 (2010)ADSGoogle Scholar
- 75.Marian, P., Marian, T.A.: Relative entropy is an exact measure of non-Gaussianity. Phys. Rev. A 88, 012322–012328 (2013)ADSGoogle Scholar
- 76.Hughes, C., Genoni, M.G., Tufarelli, T., Paris, M.G.A., Kim, M.S.: Quantum non-Gaussianity witnesses in phase space. Phys. Rev. A 90, 013810–013819 (2014)ADSGoogle Scholar
- 77.Dell’Anno, F., De Siena, S., Illuminati, F.: Multiphoton quantum optics and quantum state engineering. Phys. Rep. 428, 53–168 (2006)ADSMathSciNetGoogle Scholar
- 78.Dell’Anno, F., Buono, D., Nocerino, G., Porzio, A., Solimeno, S., De Siena, S., Illuminati, F.: Tunable non-Gaussian resources for continuous-variable quantum technologies. Phys. Rev. A 88, 043818-1–043818-13 (2013)ADSGoogle Scholar
- 79.Xiang, S.-H., Song, K.-H.: Quantum non-Gaussianity of single-mode Schrdinger cat states based on Kurtosis. EPJD 69, 260 (2015)ADSGoogle Scholar
- 80.Park, J., Lee, J., Ji, S.-W., Nha, H.: Quantifying non-Gaussianity of quantum-state correlation. Phys. Rev. A 96, 052324–052333 (2017)ADSGoogle Scholar
- 81.Leonhardt, U., Paul, H.: Realistic optical homodyne measurements and quasiprobability distributions. Phys. Rev. A 48, 4598–4604 (1993)ADSGoogle Scholar
- 82.Marian, P., Marian, T.A.: Continuous-variable teleportation in the characteristic-function description. Phys. Rev. A 74, 042306-1–042306-5 (2006)ADSGoogle Scholar
- 83.Vahlbruch, H., Mehmet, M., Chelkowski, S., Hage, B., Franzen, A., Lastzka, N., Gossler, S., Danzmann, K., Schnabel, R.: Observation of squeezed light with 10-dB quantum-noise reduction. Phys. Rev. Lett 100, 033602-1–033602-4 (2008)ADSGoogle Scholar
- 84.Vahlbruch, H., Khalaidovski, A., Lastzka, N., Gräf, C., Danzmann, K., Schnabel, R.: The GEO600 squeezed light source. Class. Quantum Grav. 27, 084027-1–084027-8 (2010)ADSGoogle Scholar
- 85.Eberle, T., Steinlechner, S., Bauchrowitz, J., Händchen, V., Vahlbruch, H., Mehmet, M., Müller-Ebhardt, H., Schnabel, R.: Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection. Phys. Rev. Lett. 104, 251102-1–251102-4 (2010)ADSGoogle Scholar
- 86.Mehmet, M., Ast, S., Eberle, T., Steinlechner, S., Vahlbruch, H., Schnabel, R.: Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB. Opt. Express 19, 25764–25772 (2011)ADSGoogle Scholar
- 87.Vollmer, C.E., Baune, C., Samblowski, A., Eberle, T., Händchen, V., Fiurásek, J., Schnabel, R.: Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm. Phys. Rev. Lett. 112, 073602-1-073602-5 (2014)ADSGoogle Scholar
- 88.Vahlbruch, H., Mehmet, M., Danzmann, K., Schnabel, R.: Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency. Phys. Rev. Lett. 117, 110801-1–110801-5 (2016)ADSGoogle Scholar
- 89.Andersen, U.L., Gehring, T., Marquardt, C., Leuchs, G.: 30 Years of squeezed light generation. Phys. Scr. 91, 053001-1–053001-11 (2016)ADSGoogle Scholar
- 90.Hu, L.-Y., Liao, Z., Ma, S., Zubairy, M.S.: Optimal fidelity of teleportation with continuous variables using three tunable parameters in a realistic environment. Phys. Rev. A 93, 033807-1–033807-10 (2016)ADSGoogle Scholar
- 91.Walls, D., Milburn, G.: Quantum Optics. Springer, Berlin (1994)zbMATHGoogle Scholar
- 92.Serafini, A., Paris, M.G.A., Illuminati, F., De Siena, S.: Quantifying decoherence in continuous variable systems. J. Opt. B Quantum Semiclass. Opt. 7, R19–R36 (2005)ADSGoogle Scholar
- 93.Bowen, W.P., Treps, N., Buchler, B.C., Schnabel, R., Ralph, T.C., Symul, T., Lam, P.K.: Unity gain and nonunity gain quantum teleportation. IEEE J. Sel. Top. Quant. 9, 1519–1532 (2003)Google Scholar
- 94.Adesso, G., Illuminati, F.: Equivalence between entanglement and the optimal fidelity of continuous variable teleportation. Phys. Rev. Lett. 95, 150503-1–150503-4 (2005)ADSGoogle Scholar